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Abstract

Inverse of an invertible convolution is an im-
portant operation that comes up in Normal-
izing Flows, Image Deblurring, etc. The naive
algorithm for backpropagation of this opera-
tion using Gaussian elimination has running
time O(n3) where n is the number of pixels in
the image. We give a fast parallel backprop-
agation algorithm with running time O(

√
n)

for a square image and provide a GPU im-
plementation of the same. Inverse Convolu-
tions are usually used in Normalizing Flows
in the sampling pass, making them slow. We
propose to use Inverse Convolutions in the
forward (image to latent vector) pass of the
Normalizing flow. Since the sampling pass is
the inverse of the forward pass, it will use con-
volutions only, resulting in efficient sampling
times. We use our parallel backpropagation
algorithm for optimizing the inverse convo-
lution layer resulting in fast training times
also. We implement this approach in various
Normalizing Flow backbones, resulting in our
Inverse-Flow models. We benchmark Inverse-
Flow on standard datasets and show signif-
icantly improved sampling times with simi-
lar bits per dimension compared to previous
models.

1 Introduction

Large-scale neural network optimization using gradi-
ent descent is made possible due to efficient and paral-
lel back-propagation algorithms [Bottou, 2010]. Large
models could not be trained on large datasets with-
out such fast back-propagation algorithms. All opera-
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tions for building practical neural network models need
efficient back-propagation algorithms [LeCun et al.,
2002]. This has limited types of operations that can be
used to build neural networks. Hence, it is important
to design fast parallel backpropagation algorithms for
novel operations that could make models more efficient
and expressive.

Convolutional layers are very commonly used in Deep
Neural Network models as they have fast parallel for-
ward and backward pass algorithms [LeCun et al.,
2002]. Inverse of a convolution is a closely related op-
eration with use cases in Normalizing Flows [Karami
et al., 2019], Image Deblurring [Eboli et al., 2020],
Sparse Blind Deconvolutions [Xu et al., 2014], Seg-
mentation, etc. However, Inverse of a Convolution
is not used directly as a layer for these problems
since straightforward algorithms for backpropagation
of such layers are highly inefficient. Such algorithms
involve computing inverse of a very large dimensional
matrix.

Fast sampling is crucial for Normalizing flow models
in various generative tasks due to its impact on prac-
tical applicability and real-time performance [Papa-
makarios et al., 2021]. Rapidly producing high-quality
samples is essential for large-scale data generation and
efficient model evaluation in fields such as image gener-
ation, molecular design [Zang and Wang, 2020], image
deblurring, and deconvolution. Normalizing flows have
demonstrated their capability in constructing high-
quality images [Kingma and Dhariwal, 2018, Meng
et al., 2022]. However, training and sampling process
is computationally expensive due to repeated need for
inverting functions (e.g., convolutions). Existing ap-
proaches rely on highly constrained architectures and
often impose limitations like diagonal, triangular, or
low-rank Jacobian matrices and approximate inversion
methods [Hoogeboom et al., 2019, Keller et al., 2021].
These constraints restrict expressiveness and efficiency
of normalizing flow models. To overcome these limita-
tions, fast, efficient, and parallelizable algorithms are
needed to compute inverse of convolutions and their
backpropagation, along with GPU-optimized imple-
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(a) Original (b) Reconstructed

Figure 1: a). Images from MNIST dataset. b). Recon-
structed images using an Inverse-Flow model based on
inv-conv layer for a forward pass.

mentations. Addressing these challenges would signifi-
cantly enhance performance and scalability of Normal-
izing flow models.

In this work, we propose a fast, efficient, and paral-
lelized backpropagation algorithm for inverse of con-
volution with running time O(mk2) on an m×m input
image. We provide a parallel GPU implementation of
proposed algorithm (together with baselines and ex-
periments) in CUDA. Furthermore, we design Inverse-
Flow, using an inverse of convolution (f−1) in forward
pass and convolution (f) for sampling. Inverse-flow
models generate faster samples than standard Normal-
izing flow models.

In summary, our contribution includes:

1. We designed a fast and parallelized backpropaga-
tion algorithm for inverse of convolution opera-
tion.

2. Implementation of proposed backpropagation al-
gorithm for inverse of convolution on GPU CUDA.

3. We propose a multi-scale flow architecture, Inverse-
Flow, for fast training of inverse of convolution
using our efficient backpropagation algorithm and
faster sampling with k × k convolution.

4. Benchmarking of Inverse-Flow and a small linear,
9-layer flow model on image dataset (MNIST, CI-
FAR10).

2 Related work

Backpropagation for Inverse of Convolution
Backpropagation algorithm performs stochastic gradi-
ent descent and effectively trains a feed-forward neu-
ral network to approximate a given continuous func-
tion over a compact domain. [Hoogeboom et al., 2019]

proposed invertible convolution, Emerging, generaliz-
ing 1x1 convolution from Glow [Kingma and Dhariwal,
2018]. [Finzi et al., 2019] proposed periodic convolu-
tion with k×k kernels. Emerging convolution combines
two autoregressive convolutions [Kingma et al., 2016],
and parallelization is not possible for its inverse. Ma-
Cow [Ma et al., 2019] uses four masked convolutions
in an autoregressive fashion to get a receptive field of
3 × 3 standard convolution, which leads to slow sam-
pling and training. To best of our knowledge, this work
is first to propose a backpropagation algorithm for in-
verse of convolution. Additionally, it is first to utilize
an inverse Normalizing flow for training and a stan-
dard flow for sampling, marking a novel approach in
field.

Normalizing flows (NF) NF traditionally relies
on invertible specialized architectures with manage-
able Jacobian determinants [Keller et al., 2021]. One
body of work builds invertible architectures by con-
catenating simple layers (coupling blocks), which are
easy to invert and have a triangular Jacobian Nagar
et al. [2021]. Many choices for coupling blocks have
been proposed, such as MAF [Papamakarios et al.,
2017], RealNVP [Dinh et al., 2016], Glow [Kingma and
Dhariwal, 2018], Neural Spline Flows [Durkan et al.,
2019]. Self Normalizing Flow (SNF) [Keller et al., 2021]
is a flexible framework for training NF by replacing
expensive terms in gradient by learning approximate
inverses at each layer. Several types of invertible convo-
lution emerged to enhance expressiveness of NF. Glow
has stood out for its simplicity and effectiveness in
density estimation and high-fidelity synthesis.

Autoregressive [Kingma et al., 2016] propose an
inverse autoregressive flow and scale well to high di-
mensions latent space, which is slow because of its au-
toregressive nature. Papamakarios et al. [2017] intro-
duced NF for density estimation with masked autore-
gressive. Sample generation from autoregressive flows
is inefficient since inverse must be computed by se-
quentially traversing through autoregressive order [Ma
et al., 2019]

Invertible Neural Network [Dinh et al., 2016]
proposed Real-NVP, which uses a restricted set of
non-volume preserving but invertible transformations.
[Kingma and Dhariwal, 2018] proposed Glow, which
generalizes channel permutation in Real-NVP with
1×1 convolution. However, these NF-based generative
models resulted in worse sample generation compared
to state-of-the-art autoregressive models and are inca-
pable of realistic synthesis of large images compared
to GANs [Brock, 2018] and Diffusion Models. CInC
Flow [Nagar et al., 2021] proposed a fast convolution
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Figure 2: Invertible convolution with zero padding
(top, left) on input x and masking of kernel Wk,k = 1

layer for NF. ButterflyFlow [Meng et al., 2022] leverage
butterfly layers for NF models. FInC Flow [Kallappa.
et al., 2023] leverages advantage of parallel computa-
tion for inverse of convolution and proposed efficient
parallelized operations for finding inverse of convolu-
tion layers and achieving O(n × k2). We designed a
backpropagation algorithm for inverse of convolution
layers. Then, multi-scale architecture, Inverse-Flow, is
designed using an inverse of convolution for forward
pass and convolution for sampling pass and backward
pass.

Sampling Time NF requires large and deep archi-
tectures to approximate complex target distributions
[Cornish et al., 2020] with arbitrary precision. Jung
et al. [2024] present importance of fast sampling for
Normalizing flow models. To model distribution us-
ing NF models requires inverse of a series of functions,
backward pass, which is slow. This creates a limitation
of slow sample generation. To address this, we propose
Inverse-Flow, which uses convolution (fast parallel op-
eration, O(k2), k×k= kernel size) for a backward pass
and inverse of convolution for a forward pass.

3 Fast Parallel Backpropagation for
Inverse of a Convolution.

We assume that input/output of a convolution is an
m×m image, with channel dimension assumed to be
1 for simplicity. The algorithm can naturally be ex-
tended to any number of channels. We also assume
that input to convolution is padded on top and left
sides with k − 1 zeros, where k is a kernel size; see
Figure 2. Furthermore, we assume that bottom right
entry of convolution kernel is 1, which ensures that it
is invertible.

The convolution operation is a Linear Operator (in
Linear Algebraic terms; see Figure 2) on space of m×m
matrices. Considering this space as column vectors of
dimension m2, this operation corresponds to multipli-
cation by a m2×m2 dimensional matrix. Hence inverse
of convolution is also a linear operator represented by
a m2 ×m2 dimensional matrix. Suppose vectorization

of m×m matrix to m2 is done by row-major ordering;
diagonal entries of Linear Operator matrix will be the
bottom right entry of kernel, which we have assumed
to be 1.

While convolution operation has fast parallel forward
and backpropagation algorithms with running time
O(k2) (assuming there are O(m2) parallel processors),
a naive approach for inverse of convolution using Gaus-
sian Elimination requires O(m6). [Kallappa. et al.,
2023] gave a fast parallel algorithm for inverse of con-
volution with running time O(mk2). In this section,
we give a fast parallel algorithm for backpropagation
of inverse of convolution (inv-conv) with running time
O(mk2) (see Table 1). Our backpropagation algorithm
allows for efficient optimization of inverse of convolu-
tion layers using gradient descent.

Table 1: Running times of algorithms for Forward and
Backward passes assuming there are enough parallel
processors as needed. The forward pass algorithm for
Inverse of Convolution was improved by [Kallappa.
et al., 2023]. In this work, we give an efficient back-
ward pass algorithm for Inverse of Convolution.

Layer Forward Backpropagation
Std. Conv. O(k2) O(k2)
inv-conv (naive) O((m2)3) O((m2)3)
inv-conv. O(mk2) O(mk2)

Notation: We will denote input to inverse of con-
volution (inv-conv) by y ∈ Rm2 and output to be
x ∈ Rm2 . We will be indexing x, y using p = (p1, p2) ∈
{1, · · · , n} × {1, · · · , n}. We define

∆(p) = {(i, j) : 0 ≤ p1 − i, p2 − j < k} \ {p}.

∆(p) informally is set of all pixels except p in the input
which depend on p in the output, when convolution is
applied with top, left padding. We also define a partial
ordering ≤ on pixels as follows

p ≤ q ⇔ p1 ≤ q1 and p2 ≤ q2.

The kernel of k × k convolution is given by matrix
W ∈ Rk×k. For backpropagation algorithm for inv-
conv, input is

x ∈ Rm2
and ∂L

∂x
∈ Rm2

,

where L is loss function. We can compute y on
O(m2k2) time using parallel forward pass algorithm
of [Kallappa. et al., 2023]. The output of backpropa-
gation algorithm is

∂L

∂y
∈ Rm2

and ∂L

∂W
∈ Rk2
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which we call input and weight gradient respectively.
We provide the algorithm for computing these in the
next 2 subsections.

3.1 Computing Input Gradients

Since y is input to inv-conv and x is output, y =
convW (x) and we get following m2 equations by defi-
nition of convolution operation.

yp = xp +
∑

q∈∆(p)

W(k,k)−p+q · xq (1)

Using chain rule of differentiation, we get that

∂L

∂yp
=

∑
q

∂L

∂xq
× ∂xq

∂yp
. (2)

Hence if we find ∂xq

∂yp
for every pixels p, q, we can com-

pute ∂L
∂yp

for every pixel p.
Theorem 1.

∂xq

∂yp
=


1−

∑
q∈∆(p) W(k,k)−p+q ·

∂xq

∂yp
if p = q

0 if q ̸≤ p

−
∑

r∈∆(p) W(k,k)−r
∂xp−r′

∂yp
otherwise.

Formal proofs are deferred to the supplementary.

Informal proof: The theorem presents computing
∂xq

∂yp
, which represents how a change in input pixel yp

affects output pixel xq in an inverse of convolution
operation. Let’s break down each case:

Case 1: When p = q, take partial derivative with re-
spect to yp on both sides of Equation 1 and rearrang-
ing.

∂xp

∂yp
= 1−

∑
q∈∆(p)

W(k,k)−p+q ·
∂xq

∂yp

So if ∂xq

∂yp
is known for all q ≤ p, we can compute ∂xp

∂yp
.

Since the off-diagonal entries are unrelated in the ≤
partial order, we can compute all of them in parallel,
provided the previous off-diagonal entries are known.

Case 2: From Equation 1, when q ̸≤ p, we have: ∂xq

∂yp
=

0. This case uses partial ordering defined earlier. If q
is not less than or equal to p in this ordering, it means
that output pixel xq is not influenced by input pixel
yp in inverse of convolution operation 1. Therefore,
derivative is 0.

Case 3: For all other cases:

∂xq

∂yp
= −

∑
r∈∆(p)

W(k,k)−r
∂xp−r′

∂yp

• ∆(p) is set of all pixels (except p) that depend on
p in a regular convolution operation.

• W(k,k)−r represents weight in convolution kernel
corresponding to relative position of r.

• ∂xp−r′

∂yp
is a recursive term, representing how

changes in yp affect x at a different position.

The negative sign and summation in this formula ac-
count for inverse nature of operation and cumulative
effects of convolution kernel.

3.2 Computing Weight Gradients

From Equation 1, we can say computing gradient of
loss L with respect to weights W involves two key
factors. Direct influence: how a specific weight Wa in
convolution kernel directly affects output x pixels, and
Recursive Influence: how neighboring pixels, weighted
by kernel, indirectly influence output x during convo-
lution operation. Similarly, to compute gradient of loss
L w.r.t filter weights W , we apply chain rule:

∂L

∂W
= ∂L

∂x
∗ ∂x

∂W
(3)

where: ∂L
∂x is gradient of loss with respect to output x

and convolution operation is applied between ∂L
∂x and

output x. Computing gradient of loss L with respect
to convolution filter weights W is important in back-
propagation when updating convolution kernel during
training. Similarly, ∂L/∂W can be calculated as 3 and
∂x/∂W can be calculated as (2) for each ki,j parame-
ter by differentiating 1 w.r.t W :

∂L

∂Wa
=

∑ ∂L

∂xq
∗ ∂xq

∂Wa
(4)

Equation 4 states that to compute gradient of loss with
respect to each weight Wa, we need to:

• Compute how loss L changes with respect to each
output pixel xq (denoted by ∂L

∂xq
).

• Multiply this by gradient of each output pixel xq

with respect to weight Wa (denoted by ∂xq

∂Wa
)

We then sum over all output pixels xq.
Theorem 2.

∂xq

∂Wa
=

{
0 if q ≤ a

−
∑

q′∈∆q(a) Wq′−a ·
∂xq−q′

∂Wa
− xq−a if q > a

Formal proofs are deferred to the supplementary.
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Informal proof: Computation of ∂xq/∂Wa depends
on relative positions of pixel q and kernel weight index.

Case 1: When a ≤ q, if index of weight matches index
of output pixel 1, gradient is 0. This means that weight
does not directly influence corresponding pixel in this
case.
Case 2: When q > a, gradient is computed recursively
by summing over neighboring pixel positions q′ in con-
volution window. In this case, q′ ∈ ∆q(a) represents
pixels within the kernel’s influence around pixel q that
specifically correspond to weight Wa, meaning pixels
whose relative position to q makes them affected by the
particular weight Wa during the convolution opera-
tion. The convolution kernel weights Wq′−a and shifted
pixels value xq−a are used to calculate gradients. See
the Supplement section for more elaborated proof.

3.3 Backpropagation Algorithm for Inverse
of Convolution

The backpropagation algorithm for inverse of convolu-
tion (inv-conv) computes gradients necessary for train-
ing models that use inv-conv operation for a forward
pass. Our proposed algorithm 1 efficiently calculates
gradients with respect to both input ( ∂L

∂Y ) and convo-
lution kernel ( ∂L

∂K ) using a parallelized GPU approach.

Given gradient of loss L with respect to output ( ∂L
∂X

), algorithm updates input gradient ∂L
∂Y by accumulat-

ing contributions from each pixel in output, weighted
by corresponding kernel values. Simultaneously, ker-
nel gradient ∂L

∂K is computed by accumulating contri-
butions from spatial interactions between input and
output. The process is parallelized across multiple
threads, with each thread handling updates for dif-
ferent spatial and channel indices, ensuring efficient
execution. This approach ensures that both input and
kernel gradients are computed in a time-efficient man-
ner, making it scalable for high-dimensional inputs
and large kernels. A fast algorithm is key for enabling
gradient-based optimization in models involving in-
verse of convolution.

Complexity of Algorithm 1: This computes ∂L
∂y

and ∂L
∂w in O(mk2) utilizing independence of each diag-

onal of output x and sequencing of m diagonals. Diag-
onals are processed sequentially, but elements within
each diagonal are processed in parallel. Each diago-
nal computation takes O(k2) time due to k × k ker-
nel. This results in a time complexity of total O(mk2)
and represents a substantial improvement over naive
O(m6) approach. It makes algorithm highly efficient
and practical for use in deep learning models with in-
verse of convolution layers, even for large input sizes
or kernel sizes.

Algorithm 1: Backpropagation Algorithm for In-
verse of Convolution (Input and Weight Gradients)
Input: K: Kernel of shape (C, C, kH , kW )
Y : output of conv of shape (C, H, W )
∂L
∂X : gradient of shape (C, H, W )
Output: ∂L

∂Y : gradient of shape (C, H, W )
∂L
∂K : gradient of shape (C, C, kH , kW )

1 Initialization:
2 ∂L

∂Y ← 0 (initialize input gradient to zero)
3 ∂L

∂K ← 0 (initialize kernel gradient to zero)
4 for d← 0, H + W − 1 do
5 for c← 0, C − 1 do

/* The below lines of code are
executed parallelly on different
threads on GPU for every index
(c, h, w) on dth diagonal. */

6 for kh ← 0, kH − 1 do
7 for kw ← 0, kW − 1 do
8 for kc ← 0, C − 1 do
9 if pixel (kc, h− kh, w − kw) not

out of bounds then
/* Compute input

gradient for every
pixel (c, h, w): */

10 ∂L
∂Y [c, h, w]← ∂L

∂Y [c, h, w] +
∂L
∂X [c, h, w] ·K[c, kc, kH −
kh − 1, kW − kw − 1]

/* Compute kernel
gradient: */

11 ∂L
∂K [c, kc, kh, kw]←

∂L
∂K [c, kc, kh, kw] +
∂L
∂X [c, h, w] ·X[kc, h−
kh, w − kw]

12 end
13 end
14 end
15 end

/* synchronize all threads */
16 end
17 end
18 return ∂L

∂Y , ∂L
∂K

4 Normalizing Flows

Normalizing flows are generative models that enable
exact likelihood evaluation. They achieve this by trans-
forming a base distribution into a target distribution
using a series of invertible functions.

Let z ∈ Z be a random variable with a simple base
distribution pZ(z) (e.g., a standard Gaussian). A Nor-
malizing flow transforms z into a random variable
y ∈ Y with a more complex distribution pY (y) through
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a series of invertible transformations: y = f(z) =
f1(f2(· · · fK(z))). Probability density of transformed
variable y can be computed using change-of-variables
formula:

pY (y) = pZ(z)
∣∣∣∣det ∂f−1

∂y

∣∣∣∣ = pZ(f−1(y))
∣∣∣∣det ∂f

∂z

∣∣∣∣−1
,

(5)

where
∣∣∣det ∂f

∂z

∣∣∣ is absolute value of determinant of Ja-
cobian of f .

This relationship (5) can be modeled as y = fθ(z)
called change of variable formula, where θ is a set of
learnable parameters. This formula enables us to com-
pute likelihood of y as:

log pY (y) = log pZ(fθ(y)) + log
∣∣∣∣det

(
∂fθ(y)

∂y

)∣∣∣∣ , (6)

where second term, log
∣∣∣det

(
∂fθ(y)

∂y

)∣∣∣, is log-
determinant of Jacobian matrix of transformation fθ.
This term ensures volume changes induced by trans-
formation are properly accounted for in likelihood. For
invertible convolutions, which are a popular choice for
constructing flexible Normalizing flows, complexity of
computing Jacobian determinant can be addressed by
making it a triangular matrix with all diagonal entries
as 1, and determination will always be one.

In this work, we leverage fast inverse of convolutions
for a forward pass (inv-conv = fθ) and convolution
for a backward pass and designed Inverse-Flow model
to generate fast samples. To train Inverse-Flow, we
use our proposed fast and efficient backpropagation
algorithm for inverse of convolution.

Figure 3: Multi-scale architecture of Inverse-Flow
model and Inv Flow step.

4.1 Inverse-Flow Architecture

Figure 3 shows architecture of Inverse-Flow. Designing
flow architecture is crucial to obtaining a family of bi-
jections whose Jacobian determinant is tractable and

computation is efficient for forward pass and backward
pass. Our model architecture resembles architecture of
Glow [Kingma and Dhariwal, 2018]. Multi-scale archi-
tecture involves a block of Squeeze, an Inv F low Step
repeated K times, and a Split layer. The block is re-
peated L−1 a number of times. A Squeeze layer follows
this, and finally, Inv F low Step is repeated K times.
At end of each Split layer, half of channels are ’split’
(taken away) and modeled as Gaussian distribution
samples. These splits half channels are latent vectors.
Same is done for output channels. These are denoted
as ZL in Figure 3. Each Inv F low Step consists of
an Inv − Conv layer, an Actnorm Layer, and a 1 × 1
Convolutional Layer, followed by a Coupling layer.

Inv F low Step: First we consider inverse of convo-
lution and call it Inv Conv layer. Figure 3 left visu-
alizes inverse of k × k convolution (Inv-Conv) block
followed by Spline Activation layer.

SplineActivation (SA): Bohra et al. [2020] intro-
duced a free-form trainable activation function for
deep neural networks. We use this layer to optimize
Inverse-Flow model. Figure 3, left most: SA layer is
added in Inv Flow step after Inv Conv block.

Actnorm: Next, Actnorm, introduced in [Kingma
and Dhariwal, 2018], acts as an activation normal-
ization layer similar to that of a batch normalization
layer. Introduced in Glow, this layer performs affine
transformation of input using scale and bias parame-
ters per channel.

1×1 Convolutional: This layer introduced in Glow
does a 1×1 convolution for a given input. Its log deter-
minant and inverse are very easy to compute. It also
improves effectiveness of coupling layers.

Coupling Layer: RealNVP [Dinh et al., 2016] intro-
duced a layer in which input is split into two halves.
First half remains unchanged, and second half is trans-
formed and parameterized by first half. The output is
concatenation of first half and affine transformation by
functions parameterized by first of second half. Cou-
pling layer consists of a 3×3 convolution followed by a
1× 1 and a modified 3× 3 convolution used in Emerg-
ing.

Squeeze: this layer takes features from spatial to
channel dimension [Behrmann et al., 2019], i.e., it re-
duces feature dimension by a total of four, two across
height dimension and two across width dimension, in-
creasing channel dimension by four. As used by Real-
NVP, we use a squeeze layer to reshape feature maps
to have smaller resolutions but more channels.
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Split: input is split into two halves across channel
dimensions. This retains first half, and a function pa-
rameterized by first half transforms second half. The
transformed second half is modeled as Gaussian sam-
ples are latent vectors. We do not use checkerboard
pattern used in RealNVP and many others to keep
architecture simple.

4.2 Inverse-Flow Training

During training, we aim to learn parameters of in-
vertible transformations (including invertible convolu-
tions) by maximizing likelihood of data. Given input
data y and a simple base distribution pz (e.g., a stan-
dard Gaussian distribution), training process aims to
find a sequence of invertible transformations such that:
z = inv-conv(y), where z is a latent vector from base
distribution and θ represents model. The likelihood of
data under model is computed using change of vari-
ables formula:

logpY
(y) = logpz

(inv-conv(y))+log
∣∣∣ det(∂inv-conv(y)

∂y
)
∣∣∣

Here det( ∂inv-conv(y)
∂y ) represents a Jacobian matrix of

transformation, which is easy to compute for inv-conv.

4.3 Sampling for Inverse-flow

To generate samples from model after training, we
use reverse process: Sample from base distribution
z ∼ pz(z) from a Gaussian distribution. Apply in-
verse of learned transformation to get back data space:
y = convθ(z) This process involves performing inverse
of all transformations in flow, including inv-conv. This
sampling procedure ensures that generated samples
are drawn from distribution that model has learned
during training, utilizing invertible nature of convolu-
tional layers.

5 Results

In this section, we compare the performance of Inverse-
Flow against other flow architectures. We present
Inverse-Flow model results for bit per-dimension (log-
likelihood), sampling time (ST), and forward pass time
(FT) on two image datasets. To test modeling of
Inverse-Flow, we compare bits-per-dimension (BPD).
To compare ST, we generate 100 samples for each flow
setting on single NVIDIA GeForce RTX 2080 Ti GPU
and take an average of 5 runs after warm-up epochs.
For comparing FT, we present forward pass time with
a batch size of 100 averaging over 10 batch runs af-
ter warm-up epochs. Due to computation constraints,
we train all models for 100 epochs, compare BPD with
other state-of-the-art, and show that Inverse-Flow out-
performs based on model size and sampling speed.

Table 2: Performance comparison for MNIST dataset
with 4 block size and 2 blocks, small model size. ST
= samling time, FT = Forward pass, NLL is negative-
log-likelihood. All times are in milliseconds (ms) and
parameters in millions (M).

Method ST (ms) FT (ms) NLL BPD param (M)
Emerging 332.7 ±2.7 121.0 ±1.5 630 1.12 0.16
FIncFlow 47.3 ±2.3 95.1 ±2.5 411 0.73 5.16
SNF 33.5 ±2.2 212.5 ±7.3 557 1.03 1.2
Inverse-Flow 12.2 ±1.1 77.9 ±1.3 350 0.62 0.6

Table 3: Performance comparison for MNIST with
block size (K = 16) and number of blocks (L = 2).

Method ST NLL BPD Param Inverse
SNF 99 ±2.1 699 1.28 10.1 approx
FIncFlow 90 ±2.2 655 1.15 10.2 exact
MintNet 320±2.8 630 0.98 125.9 approx
Emerging 814±6.2 640 1.09 11.4 exact
Inverse-Flow 52 ±1.3 710 1.31 1.6 exact

5.1 Modeling and Sample time for MNIST

We compare sample time (ST) and number of param-
eters for small model architecture (L = 2, K = 4) on
small image datasets, MNIST [LeCun et al., 1998] with
image size 1× 28× 28 in Table 2. It may not be feasi-
ble to run huge models in production because of large
computations. Therefore, it is interesting to study be-
havior of models when they are constrained in size. So,
We compare Inverse-Flow with other Normalizing flow
models with same number of flows per level (K), for
K = 4, 16, and L = 2. In Table 2, Inverse-Flow demon-
strates fastest ST of 12.2, significantly outperforming
other methods. This advantage is maintained in Table
3, where Inverse-Flow achieves the second-best ST of
52 ± 1.3, only behind SNF but with a much smaller
parameter count. Inverse-Flow gives competitive for-
ward time. Table 2 shows that Inverse-Flow has best
forward time of 77.9, indicating efficient forward pass
computations compared to other methods.

In Table 2, Inverse-Flow achieves lowest NLL (350)
and BPD (0.62), suggesting superior density estima-
tion and data compression capabilities for MNIST
dataset with small model size. Inverse-Flow consis-
tently maintains a low parameter count for all model
sizes. Table 2 uses only 0.6M parameters, which is sig-
nificantly less than FInc Flow (5.16M) while achiev-
ing better performance. In Table 3, Inverse-Flow has
smallest model size among all methods, demonstrating
its efficiency. Inverse-Flow consistently shows strong
performance across multiple metrics (ST, FT, NLL,
BPD) while maintaining a compact model size. Fol-
lowing observations highlight Inverse-Flow’s efficiency
in sampling, density estimation, and parameter usage,
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making it a competitive method for generative model-
ing on MNIST dataset.

For small linear flow architecture, our Inv Conv
demonstrates the best sampling time of 19.7 ± 1.2,
which is significantly faster than all other methods
presented in Table 4. This indicates that Inv Conv
offers superior efficiency in generating samples from
model, which is crucial for many practical applica-
tions of generative models. Inv Conv achieves fastest
forward time of 100, outperforming all other meth-
ods. Additionally, it has smallest parameter count of
0.096 million, making it most parameter-efficient ap-
proach. This combination of speed and compactness
suggests that Inv Conv offers an excellent balance be-
tween computational efficiency and model size, which
is valuable for deployment in resource-constrained en-
vironments or applications requiring real-time perfor-
mance.

Table 4: Runtime comparison of small planer mod-
els with 9 layers with different invertible convolutional
layers for MNIST.

Method NLL ST FT Param
Exact Conv. 637.4 ±0.2 36.5 ±4.1 294 0.103
Exponential Conv. 638.1 ±1.0 27.5 ±0.4 160 0.110
Emerging Conv. 645.7 ±3.6 26.1 ±0.4 143 0.103
SNF Conv. 638.6 ±0.9 61.3 ±0.3 255 0.364
Inv Conv (our) 645.3 ±1.2 19.7 ±1.2 100 0.096

Table 5: Performance comparison for CIFAR10 dataset
with L = 2 blocks and block size of K = 4.

Method BPD ST FT Param
SNF 3.47 199.0 ±2.2 81.8 ±3.6 0.446
Woodbury 3.55 2559.4 ±10.5 31.3 ±1.5 3.125
FIncFlow 3.52 47.3 ±2.3 125.5 ±4.2 0.589
Butterfly Flow 3.36 155 ±4.6 394.6 ±3.4 3.168
Inverse-Flow 3.56 23.2 ±1.3 250.2 ±2.9 0.466

5.2 Modeling and Sample time for CIFAR10

In Table 5, Inverse-Flow demonstrates the fastest sam-
pling time of 23.2 ± 1.3, significantly outperforming
other methods. This advantage is maintained in Table
6, where Inverse-Flow achieves the second-best sam-
pling time of 91.6 ± 6.5 among methods with exact
inverse computation, only behind SNF which uses an
approximate inverse. While not the fastest in forward
time, Inverse-Flow shows balanced performance. In
Table 5, its forward time of 250.2 ± 2.9 is in the mid-
dle range. In Table 6, its forward time of 722 ± 7.0 is
competitive with other exact inverse methods.

While not the best, Inverse-Flow maintains compet-
itive BPD scores. In Table 5, it achieves 3.56 BPD,

which is comparable to other methods. In Table 6, its
BPD of 3.57 is close to the performance of other ex-
act inverse methods. Inverse-Flow consistently main-
tains a low parameter count. In Table 5, it uses
only 0.466M parameters, which is among the low-
est. In Table 6, Inverse-Flow has the second-smallest
model size (1.76M param) among methods with ex-
act inverse computation, demonstrating its efficiency.
Inverse-Flow demonstrates a good balance between
sampling speed and BPD. Comparing Tables 5 and
6, we can see that Inverse-Flow scales well when in-
creasing the block size from 4 to 16. It maintains com-
petitive performance across different model sizes and
complexities. Table 6 highlights that Inverse-Flow pro-
vides exact inverse computation, a desirable property
shared with several other methods like MaCow, CInC
Flow, Butterfly Flow, and FInc Flow.

Table 6: Performance comparison for CIFAR dataset
with block size (K = 16) and number of blocks
(L = 2). SNF uses approx for inverse, and MintNet
uses autoregressive functions. *time in seconds.

Method BPD ST FT Param
SNF 3.52 16.8 ±2.7 609 ±5.4 1.682
MintNet 3.51 25.0∗ ±1.5 2458 ±6.2 12.466
Woodbury 3.48 7654.4 ±13.5 119 ±2.5 12.49
MaCow 3.40 790.8 ±4.3 1080 ±6.6 2.68
CInC Flow 3.46 1710.0 ±9.5 615 ±5.0 2.62
Butterfly Flow 3.39 311.8 ±4.0 1325 ±7.5 12.58
FInc Flow 3.59 194.8 ±2.5 548 ±6.2 2.72
Inverse-Flow 3.57 91.6 ±6.5 722 ±7.0 1.76

6 Conclusion

In this paper, we give a fast and efficient backpropa-
gation algorithm for inverse of convolution. Also, we
proposed a flow-based model, Inverse-Flow, that lever-
ages convolutions for efficient sampling and inverse of
convolution for learning. Our key contributions include
a fast backpropagation algorithm for inverse of con-
volution, enabling efficient learning and sampling; a
multi-scale architecture accelerating sampling in Nor-
malizing flow models; a GPU implementation for high-
performance computation; and extensive experiments
demonstrating improved training and sampling tim-
ing. Inverse-Flow significantly reduces sampling time,
making them competitive with other generative ap-
proaches. Our fast and efficient backpropagation opens
new avenues for training more expressive and faster
Normalizing flow models. Inverse-Flow represents a
substantial advancement in efficient, expressive gen-
erative modeling, addressing key computational chal-
lenges and expanding the practical applicability of
flow-based models. This work contributes to the ongo-
ing development of generative models and their real-
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world applications, positioning flow-based approaches
as powerful tools in the machine-learning landscape.

Acknowledgment

This research was supported by iHub-IIITH PhD Fel-
lowship 2023-24.

References
J. Behrmann, W. Grathwohl, R. T. Chen, D. Du-

venaud, and J.-H. Jacobsen. Invertible residual
networks. In International conference on machine
learning, pages 573–582. PMLR, 2019.

P. Bohra, J. Campos, H. Gupta, S. Aziznejad, and
M. Unser. Learning activation functions in deep
(spline) neural networks. IEEE Open Journal of Sig-
nal Processing, 1:295–309, 2020.

L. Bottou. Large-scale machine learning with stochas-
tic gradient descent. In Proceedings of COMP-
STAT’2010: 19th International Conference on Com-
putational StatisticsParis France, August 22-27,
2010 Keynote, Invited and Contributed Papers,
pages 177–186. Springer, 2010.

A. Brock. Large scale gan training for high fi-
delity natural image synthesis. arXiv preprint
arXiv:1809.11096, 2018.

R. Cornish, A. Caterini, G. Deligiannidis, and
A. Doucet. Relaxing bijectivity constraints with
continuously indexed normalising flows. In Interna-
tional conference on machine learning, pages 2133–
2143. PMLR, 2020.

L. Dinh, J. Sohl-Dickstein, and S. Bengio. Den-
sity estimation using real nvp. arXiv preprint
arXiv:1605.08803, 2016.

C. Durkan, A. Bekasov, I. Murray, and G. Papamakar-
ios. Neural spline flows. Advances in neural infor-
mation processing systems, 32, 2019.

T. Eboli, J. Sun, and J. Ponce. End-to-end inter-
pretable learning of non-blind image deblurring. In
Computer Vision–ECCV 2020: 16th European Con-
ference, Glasgow, UK, August 23–28, 2020, Proceed-
ings, Part XVII 16, pages 314–331. Springer, 2020.

M. Finzi, P. Izmailov, W. Maddox, P. Kirichenko, and
A. G. Wilson. Invertible convolutional networks. In
Workshop on Invertible Neural Nets and Normal-
izing Flows, International Conference on Machine
Learning, volume 2, 2019.

E. Hoogeboom, R. Van Den Berg, and M. Welling.
Emerging convolutions for generative normalizing
flows. In International conference on machine learn-
ing, pages 2771–2780. PMLR, 2019.

G. Jung, G. Biroli, and L. Berthier. Normalizing flows
as an enhanced sampling method for atomistic su-
percooled liquids. Machine Learning: Science and
Technology, 5(3):035053, 2024.

A. Kallappa., S. Nagar., and G. Varma. Finc flow:
Fast and invertible k × k convolutions for nor-
malizing flows. Proceedings of the 18th Interna-
tional Joint Conference on Computer Vision, Imag-
ing and Computer Graphics Theory and Applica-
tions (VISIGRAPP 2023) - Volume 5: VISAPP,
pages 338–348, 2023. ISSN 2184-4321. doi: 10.5220/
0011876600003417.

M. Karami, D. Schuurmans, J. Sohl-Dickstein,
L. Dinh, and D. Duckworth. Invertible convolutional
flow. Advances in Neural Information Processing
Systems, 32, 2019.

T. A. Keller, J. W. Peters, P. Jaini, E. Hoogeboom,
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Parallel Backpropagation for Inverse of a Convolution with
Application to Normalizing Flows: Supplementary Materials

We provide a comprehensive extension to the main paper, offering in-depth insights into the experimental setup,
additional experimental results, and rigorous mathematical proofs. The Supplementary begins with experimental
specifications Section 7, including information about model architecture, training parameters, and hardware
used. In next Section 8, we present an interesting application of inverse convolution layers in image classification,
demonstrating high accuracy on MNIST dataset with a remarkably small model. Section 9 presents thorough
proofs of two theorems related to backpropagation algorithm for inverse of convolution layers. These proofs,
presented with clear mathematical notation and step-by-step derivations, establish a theoretical foundation for
computing input gradients and weight gradients in context of inverse of convolution operations.

7 Experimental Details

The architecture of SNF is the starting point for Inverse-Flow architecture and all our experiments. All models
are trained using the Adam optimizer. We evaluate our Inverse-Flow model for density estimation (BPD, NLL),
Sampling time (ST), and Forward time (FT) with a batch size of 100 for all experiments. For MNIST, we use an
initial learning rate of 1e − 3, scheduled to decrease by one order of magnitude after 50 epochs for all datasets
but CIFAR10, which is decreased every 25 epochs. All the experiments were run on NVIDIA GeForce RTX 2080
Ti GPU. For MaCow, SNF, MaCow and SNF, we use the official code released by the authors. Emerging was
implemented in PyTorch by the authors of SNF, we make use of that. We have implemented CInC Flow on
PyTorch to get the results.

Figure 4: Overview of a small image classification model with two inverse of convolution ( 3× 3 inv-con) layers
with 97.6% accuracy on MNIST dataset.

8 Image Classification using Inverse of Convolution Layers:

For MNIST digits image classification using the inverse of convolution (inv-conv) layers and proposed its back-
propagation algorithm, we trained a two inv-conv layer and one fully connected layer model with 16 learnable
parameters for inv-conv layers. See Figure 4, this simple and small two inv-conv and one fully connected (fc)
layers model gives 97.6% classification accuracy after training for 50 epochs.

9 Detailed Proofs

In this section, we provide the proofs relating to the proposed backpropagation algorithm for the inverse of the
convolution layer. First, we provide the following notation and the equation for the gradients.



Sandeep Nagar, Girish Varma

Notation: We will follow the notation used in the main paper.
We will denote input to the inverse of convolution (inv-conv) by y ∈ Rm2 and output to be x ∈ Rm2 . We will be
indexing x, y using p = (p1, p2) ∈ {1, · · · , n} × {1, · · · , n}. We define

∆(p) = {(i, j) : 0 ≤ p1 − i, p2 − j < k} \ {p}.

∆(p) informally is set of all pixels except p which depend on p, when convolution is applied with top, left padding.
We also define a partial ordering ≤ on pixels as follows

p ≤ q ⇔ p1 ≤ q1 and p2 ≤ q2.

The kernel of k×k convolution is given by matrix W ∈ Rk×k. For backpropagation algorithm for inv-conv, input
is

x ∈ Rm2
and ∂L

∂x
∈ Rm2

,

where L is loss function. We can compute y on O(mk2) time using parallel forward pass algorithm Aaditya et.
al. The output of backpropagation algorithm is

∂L

∂y
∈ Rm2

and ∂L

∂W
∈ Rk2

which we call input and weight gradient, respectively. We provide the algorithm for computing these in the next
2 subsections.

9.1 Proof of Theorem 1

Computing Input Gradients Since y is input to inv-conv and x is output, y = convW (x) and we get following
m2 equations by definition of convolution operation.

yp = xp +
∑

q∈∆(p)

W(k,k)−p+q · xq (7)

Using chain rule of differentiation, we get that

∂L

∂yp
=

∑
q

∂L

∂xq
× ∂xq

∂yp
. (8)

Hence if we find ∂xq

∂yp
for every pixels p, q, we can compute ∂L

∂yp
for every pixel p.

Theorem 1: Input y gradients

∂xq

∂yp
=


1 if p = 1
0 if q ̸≤ p

−
∑

r∈∆(p) W(k,k)−r
∂xp−r′

∂yp
otherwise.

(9)

Proof. We will prove Theorem 1 by induction on the partial ordering of pixels.

Base Case: For p = (1, 1), which is the smallest element in our partial ordering:

From Equation (7), we have: y(1,1) = x(1,1) . This implies: ∂x(1,1)
∂y(1,1)

= 1 and for any q ̸= (1, 1): ∂xq

∂y(1,1)
= 0. This

satisfies the theorem for the base case.

Inductive Step: Assume the theorem holds for all pixels less than p in the partial ordering. We will prove it
holds for p.

1. For q ̸≤ p, xq does not depend on yp due to the structure of the convolution operation. Therefore, ∂xq

∂yp
= 0.
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2. For q ≤ p, we differentiate Equation (7) with respect to yp:

∂xp

∂yp
= ∂xp

∂yp
+

∑
r∈∆(p)

W(k,k)−p+r ·
∂xr

∂yp

1 = ∂xp

∂yp
+

∑
r∈∆(p)

W(k,k)−p+r ·
∂xr

∂yp
(10)

Rearranging 10:

∂xp

∂yp
= 1−

∑
r∈∆(p)

W(k,k)−p+r ·
∂xr

∂yp
(11)

This is equivalent to the third case in the theorem, with q = p.

3. For q < p, we can write:

xq = yq −
∑

r∈∆(q)

W(k,k)−q+r · xr

Differentiating with respect to yp:

∂xq

∂yp
= ∂yq

∂yp
−

∑
r∈∆(q)

W(k,k)−q+r ·
∂xr

∂yp

Since q < p, ∂yq

∂yp
= 0. Therefore:

∂xq

∂yp
= −

∑
r∈∆(q)

W(k,k)−q+r ·
∂xr

∂yp
(12)

This is equivalent to the third case in the theorem.

Thus, by induction, the theorem holds for all pixels p.

9.2 Proof of Theorem 2

Computing Weight Gradients From Equation 7, we can say computing gradient of loss L with respect to
weights W involves two key factors. Direct influence: how a specific weight W in convolution kernel directly
affects output x pixels, and Recursive Influence: how neighboring pixels, weighted by kernel, indirectly influence
output x during inverse of convolution operation. Similarly, to compute gradient of loss L w.r.t filter weights W ,
we apply chain rule:

∂L

∂W
= ∂L

∂x
× ∂x

∂W
(13)

where: ∂L
∂x is gradient of loss with respect to output x and inverse of convolution operation is applied between

∂L
∂x and output x. Computing gradient of loss L with respect to convolution filter weights W is important
in backpropagation when updating convolution kernel during training. Similarly, ∂L/∂W can be calculated as
Equation 13 and ∂x/∂W can be calculated as (Equation 13) for each ki,j parameter by differentiating Equation
7 w.r.t W :

∂L

∂Wa
=

∑ ∂L

∂xq
× ∂xq

∂Wa
(14)

Equation 14 states that to compute gradient of loss with respect to each weight Wa, we need to:
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• Compute how loss L changes with respect to each output pixel xq (denoted by ∂L
∂xq

).

• Multiply this by gradient of each output pixel xq with respect to weight Wa (denoted by ∂xq

∂Wa
)

We then sum over all output pixels xq.

Theorem 2: Weights W gradients

∂xq

∂Wa
=

{
0 if q ≤ a

−
∑

q′∈∆q(a) Wq′−a ×
∂xq−q′

∂Wa
− xq−a if q > a

(15)

Proof. We will prove Theorem 2 by induction on the partial ordering of pixels.

Base Case:

For q ≤ a, we have ∂xq

∂Wa
= 0.

This is because in the inverse of convolution operation, xq does not directly depend on Wa. The weight Wa only
affects pixels that come after q in the partial ordering.

Inductive Step: Assume the theorem holds for all pixels less than q in the partial ordering. We will prove it
holds for q > a.

From Equation (7), we have:

yq = xq +
∑

r∈∆(q)

W(k,k)−q+r · xr (16)

Rearranging this equation 16:

xq = yq −
∑

r∈∆(q)

W(k,k)−q+r · xr (17)

Now, let’s differentiate both sides of 17with respect to Wa:

∂xq

∂Wa
= ∂yq

∂Wa
−

∑
r∈∆(q)

(
∂W(k,k)−q+r

∂Wa
· xr + W(k,k)−q+r ·

∂xr

∂Wa

)
(18)

Note that ∂yq

∂Wa
= 0 because y is the input to the inverse convolution and doesn’t depend on W .

Also, ∂W(k,k)−q+r

∂Wa
= 1 if (k, k)− q + r = a, and 0 otherwise.

Let ∆q(a) = {r ∈ ∆(q) : (k, k)− q + r = a}. Then we can rewrite the equation 18 as 19:

∂xq

∂Wa
= −

∑
r∈∆q(a)

xr −
∑

r∈∆(q)

W(k,k)−q+r ·
∂xr

∂Wa
(19)

The first sum simplifies to −xq−a because r = q − (k, k) + a for r ∈ ∆q(a).

In the second sum, we can use the inductive hypothesis for ∂xr

∂Wa
because r < q.

Therefore:
∂xq

∂Wa
= −xq−a −

∑
r∈∆(q)

W(k,k)−q+r ·
∂xr

∂Wa
(20)

The right side of 20 is equivalent to the second case in the theorem.

Thus, by induction, the theorem holds for all pixels q.
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