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Abstract. Community detection is the problem of identifying natural divisions
in networks. Efficient parallel algorithms for identifying such divisions is critical
in a number of applications, where the size of datasets have reached significant
scales. This paper presents one of the most efficient multicore implementations of
the Louvain algorithm, a high quality community detection method. On a server
equipped with dual 16-core Intel Xeon Gold 6226R processors, our Louvain,
which we term as GVE-Louvain, outperforms Vite, Grappolo, NetworKit Lou-
vain, and cuGraph Louvain (running on NVIDIA A100 GPU) by 50×, 22×,
20×, and 5.8× faster respectively - achieving a processing rate of 560M edges/s
on a 3.8B edge graph. In addition, GVE-Louvain improves performance at an
average rate of 1.6× for every doubling of threads.

Keywords: Community detection, Parallel Louvain algorithm

1 Introduction

Community detection is the problem of uncovering the underlying structure of complex
networks, i.e., identifying groups of vertices that exhibit dense internal connections
but sparse connections with the rest of the network, in an unsupervised manner. It has
numerous applications in domains such as drug discovery, protein annotation, topic
discovery, anomaly detection, and criminal identification. Communities identified are
intrinsic when based on network topology alone, and are disjoint when each vertex
belongs to only one community [11]. The Louvain method [4] is a popular heuristic-
based approach for community detection, with the modularity metric [18] being used to
measure the quality of communities identified.

In recent years, the collection of data and the relationships among them, repre-
sented as graphs, have reached unmatched levels. This has necessitated the design of
efficient parallel algorithms for community detection on large networks. Existing stud-
ies on Louvain propose several optimizations [10, 12, 17, 26] and parallelization tech-
niques [2, 3, 6, 7, 10, 12, 17, 22, 27]. Further, significant research effort has been focused
on developing efficient parallel implementations of Louvain algorithm for multicore
CPUs [7, 12, 23, 24], GPUs [17], CPU-GPU hybrids [3], multi-GPUs [6, 8], and multi-
node systems — CPU only [10] / CPU-GPU hybrids [2].
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However, many of the aforementioned works concentrate on optimizing the local-
moving phase of the Louvain algorithm — these optimization techniques are scattered
over a number of papers, making it difficult for a reader to get a grip over them — but do
not address optimization for the aggregation phase of the algorithm, which emerges as
a bottleneck after the local-moving phase has been optimized. Some implementations
also fail to adequately parallelize the algorithm. Moreover, much attention has been di-
rected towards GPU-based solutions. However, developing algorithms that efficiently
utilize GPUs can be challenging both in terms of initial implementation and ongoing
maintenance. Further, the soaring prices of GPUs present hurdles. The multicore/shared
memory environment holds significance for community detection, owing to its energy
efficiency and the prevalence of hardware with ample DRAM capacities. Through our
implementation of the Louvain algorithm3, we aim to underscore that CPUs remain
adept at irregular computation , especially for algorithms where workload diminishes
progressively with each iteration. Additionally, we show that achieving optimal perfor-
mance necessitates a focus on the data structures.

2 Related work

The Louvain method is a greedy modularity-optimization based community detection
algorithm, and is introduced by Blondel et al. from the University of Louvain [4]. It
identifies communities with resulting high modularity, and is thus widely favored [15].
Algorithmic improvements proposed for the original algorithm include early pruning
of non-promising candidates (leaf vertices) [12], attempting local move only on likely
vertices [22], ordering of vertices based on node importance [1], moving nodes to a
random neighbor community [25], threshold scaling [12, 17], threshold cycling [10],
subnetwork refinement [26], multilevel refinement [22], and early termination [10].

To parallelize the Louvain algorithm, a number of strategies have been attempted.
These include using heuristics to break the sequential barrier [16], ordering vertices via
graph coloring [12], performing iterations asynchronously [22], using adaptive parallel
thread assignment [17], parallelizing the costly first iteration [27], using vector based
hashtables [12], and using sort-reduce instead of hashing [6].

We now discuss about a number of state-of-the-art implementation of Parallel Lou-
vain. Ghosh et al. [9] propose Vite, a distributed memory parallel implementation of
the Louvain method that incorporates several heuristics to enhance performance while
maintaining solution quality, while Grappolo, by Halappanavar et al. [12], is a shared
memory parallel implementation. Qie et al. [20] present a graph partitioning algorithm
that divides the graph into sets of partitions, aiming to minimize inter-partition com-
munication delay and avoid community swaps, akin to the graph coloring approach
proposed by Halappanavar et al. [12]. We do not observe the community swap issue
on multicore CPUs (it likely resolves itself), but do observe it on GPUs (likely due to
lockstep execution). NetworKit [24] is a software package designed for analyzing the
structural aspects of graph data sets with billions of connections. It is implemented as a
hybrid with C++ kernels and a Python frontend, and includes a parallel implementation

3 https://github.com/puzzlef/louvain-communities-openmp
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of the Louvain algorithm. Finally, cuGraph [13] is a GPU-accelerated graph analytics
library that is part of the RAPIDS suite of data science and machine learning tools. It
harnesses the power of NVIDIA GPUs to significantly speed up graph analytics com-
pared to traditional CPU-based methods. cuGraph’s core is written in C++ with CUDA
and is accessed through a Python interface.

However, most existing works only focus on optimizing the local-moving phase of
the Louvain algorithm, and lack effective parallelization. For instance, the implemen-
tation of NetworKit Louvain exhibits several shortcomings. It employs plain OpenMP
parallelization for certain operations, utilizing a static schedule with a chunk size of 1,
which may not be optimal when threads are writing to adjacent memory addresses. Ad-
ditionally, NetworKit Louvain employs guided scheduling for the local-moving phase,
whereas we utilize dynamic scheduling for better performance. NetworKit Louvain also
generates a new graph for each coarsening step, leading to repeated memory allocation
and preprocessing due to recursive calls. The coarsening involves several sequential op-
erations, and adding each edge to the coarsened graph requires O(D) operations, where
D represents the average degree of a vertex, which is suboptimal for parallelism. Lastly,
NetworKit Louvain lacks parallelization for flattening the dendrogram, potentially hin-
dering its performance. Our parallel implementation of Louvain addresses these issues.

3 Preliminaries

Consider an undirected graph G(V,E,w) with V representing the set of vertices, E the
set of edges, and wij = wji denoting the weight associated with each edge. In the case
of an unweighted graph, we assume unit weight for each edge (wij = 1). The neighbors
of a vertex i are denoted as Ji = {j | (i, j) ∈ E}, the weighted degree of each vertex as
Ki =

∑
j∈Ji

wij , the total number of vertices as N = |V |, the total number of edges as
M = |E|, and the sum of edge weights in the undirected graph as m =

∑
i,j∈V wij/2.

3.1 Community detection

Disjoint community detection is the process of identifying a community membership
mapping, C : V → Γ , where each vertex i ∈ V is assigned a community-id c ∈ Γ ,
where Γ is the set of community-ids. We denote the vertices of a community c ∈ Γ as
Vc, and the community that a vertex i belongs to as Ci. Further, we denote the neighbors
of vertex i belonging to a community c as Ji→c = {j | j ∈ Ji and Cj = c}, the sum
of those edge weights as Ki→c =

∑
j∈Ji→c

wij , the sum of weights of edges within
a community c as σc =

∑
(i,j)∈E and Ci=Cj=c wij , and the total edge weight of a

community c as Σc =
∑

(i,j)∈E and Ci=c wij .

3.2 Modularity

Modularity serves as a metric for assessing the quality of communities identified by
heuristic-based community detection algorithms. It is computed as the difference be-
tween the fraction of edges within communities and the expected fraction if edges were
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randomly distributed, yielding a range of [−0.5, 1] where higher values indicate better
results [5]. The modularity Q of identified communities is determined using Equation
1, where δ represents the Kronecker delta function (δ(x, y) = 1 if x = y, 0 otherwise).
The delta modularity of moving a vertex i from community d to community c, denoted
as ∆Qi:d→c, can be computed using Equation 2.

Q =
1

2m

∑
(i,j)∈E

[
wij −

KiKj

2m

]
δ(Ci, Cj) =

∑
c∈Γ

[
σc

2m
−
(
Σc

2m

)2
]

(1)

∆Qi:d→c =
1

m
(Ki→c −Ki→d)−

Ki

2m2
(Ki +Σc −Σd) (2)

3.3 Louvain algorithm

The Louvain method [4] is a modularity optimization based agglomerative algorithm for
identifying high quality disjoint communities in large networks. It has a time complex-
ity of O(L|E|) (with L being the total number of iterations performed), and a space
complexity of O(|V | + |E|) [15]. The algorithm consists of two phases: the local-
moving phase, where each vertex i greedily decides to move to the community of one
of its neighbors j ∈ Ji that gives the greatest increase in modularity ∆Qi:Ci→Cj

(us-
ing Equation 2), and the aggregation phase, where all the vertices in a community are
collapsed into a single super-vertex. These two phases make up one pass, which repeats
until there is no further increase in modularity [4].

4 Approach

4.1 Optimizations for Louvain algorithm

We use a parallel implementation of the Louvain method to determine suitable parame-
ter settings and optimize the original algorithm through experimentation with a variety
of techniques. We use asynchronous version of Louvain, where threads work indepen-
dently on different parts of the graph. This allows for faster convergence but can also
lead to more variability in the final result [4, 12].

For each optimization, we test a number of relevant alternatives, and show the
relative time and the relative modularity of communities obtained by each alternative in
Figure 1. This result is obtained by running the tests on each graph in the dataset (see
Table 1), 5 times on each graph to reduce the impact of noise, taking their geometric
mean and arithmetic mean for the runtime and modularity respectively, and representing
them as a ratio within each optimization category.

Adjusting OpenMP loop schedule We attempt static, dynamic, guided, and auto loop
scheduling approaches of OpenMP (each with a chunk size of 2048) to parallelize the
local-moving and aggregation phases of the Louvain algorithm. Results indicate that the
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scheduling behavior can have small impact on the quality of obtained communities. We
consider OpenMP’s dynamic loop schedule to be the best choice, as it helps achieve
better load balancing when the degree distribution of vertices is non-uniform, and offers
a 7% reduction in runtime with respect to OpenMP’s auto loop schedule, with only a
0.4% reduction in the modularity of communities obtained (likely to be just noise).

Limiting the number of iterations per pass Restricting the number of iterations of
the local-moving phase ensures its termination within a reasonable number of itera-
tions, which helps minimize runtime. This can be important since the local-moving
phase performed in the first pass is the most expensive step of the algorithm. However,
choosing too small a limit may worsen convergence rate. Our results indicate that lim-
iting the maximum number of iterations to 20 allows for 13% faster convergence, when
compared to a maximum iterations of 100.

Adjusting tolerance drop rate (threshold scaling) Tolerance is used to detect con-
vergence in the local-moving phase of the Louvain algorithm, i.e., when the total delta-
modularity in a given iteration is below or equal to the specified tolerance, the local-
moving phase is considered to have converged. Instead of using a fixed tolerance across
all passes of the Louvain algorithm, we can start with an initial high tolerance and then
gradually reduce it. This is known as threshold scaling [12, 17], and it helps minimize
runtime of the first pass of the algorithm (which is usually the most expensive). Based
on our findings, a tolerance drop rate of 10 yields 4% faster convergence, with respect
to a tolerance drop rate of 1 (threshold scaling disabled), with no reduction in quality.

Adjusting initial tolerance Starting with a smaller initial tolerance allows the algo-
rithm to explore broader possibilities for community assignments in the early stage, but
comes at the cost of increased runtime. We find an initial tolerance of 0.01 provides a
14% reduction in runtime of the algorithm with no reduction in the quality of identified
communities, when compared to an initial tolerance of 10−6.

Adjusting aggregation tolerance The aggregation tolerance determines the point at
which communities are considered to have converged based on the number of commu-
nity merges. In other words, if too few communities merged this pass we should stop
here, i.e., if |Vaggregated|/|V | ≥ aggregation tolerance, we consider the algorithm to
have converged. Adjusting aggregation tolerance allows the algorithm to stop earlier
when further merges have minimal impact on the final result. According to our obser-
vations, an aggregation tolerance of 0.8 appears to be the best choice, as it presents a
14% reduction in runtime, when compared to the aggregation tolerance being disabled
(1), while identifying final communities of equivalent quality.

Vertex pruning Vertex pruning is used to minimize unnecessary computation [22].
Here, when a vertex changes its community, its marks its neighbors to be processed.
Once a vertex has been processed, it is marked as not to be processed. However, it
comes with the added overhead of marking/unmarking of vertices. Based on our results,
vertex pruning justifies this overhead, and should be enabled for 11% performance gain.
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Finding community vertices for aggregation phase In the aggregation phase of the
Louvain algorithm, the communities obtained in the previous local-moving phase of the
algorithm are combined into super-vertices in the aggregated graph, with the edges be-
tween two super-vertices being equal to the total weight of edges between the respective
communities. This requires one to obtain the list of vertices belonging to each commu-
nity, instead of the mapping of community membership of each vertex that we have
after the local-moving phase ends. A straight-forward implementation of this would
make use of two-dimensional arrays for storing vertices belonging to each community,
with the index in the first dimension representing the community id c, and the index in
the second dimension pointing to the nth vertex in the given community c. However,
this requires memory allocation during the algorithm, which is expensive. We employ a
parallel prefix sum technique along with a preallocated Compressed Sparse Row (CSR)
data structure, eliminating repeated memory allocation and deallocation, and enhancing
performance. Indeed, our findings indicate that using parallel prefix sum along with a
preallocated CSR is 2.2× faster than using 2D arrays for aggregating vertices.

Storing aggregated communities (super-vertex graph) After the list of vertices be-
longing to each community have been obtained, the communities need to be aggregated
(or compressed) into super-vertices, such that edges between two super-vertices being
equal to the total weight of edges between the respective communities. This is generally
called the super-vertex graph, or the compressed graph. It is then used as an input to the
local-moving phase of the next pass of the Louvain algorithm. A simple data structure
to store the super-vertex graph in the adjacency list format would be a two-dimensional
array. Again, this requires memory allocation during the algorithm, which is bad for
performance. Utilizing two preallocated CSRs, one for the source graph and the other
for the target graph (except the first pass, where the dynamic graph may be stored in
any desired format suitable for dynamic batch updates), along with parallel prefix sum
can help here. We observe that using parallel prefix sum along with preallocated CSRs
for maintaining the super-vertex graph is again 2.2× faster than using 2D arrays.

Hashtable design for local-moving/aggregation phases One can use C++’s inbuilt
maps as per-thread (independent) hashtables for the Louvain algorithm — but this has
poor performance. We use a key-list and a full-size values array (collision-free) to dra-
matically improve performance. However, if memory addresses of the hashtables are
nearby (Close-KV) — as with NetworKit Louvain [24], performance is not as high,
even if each thread uses its own hashtable exclusively. This is possibly due to false
cache-sharing. Alternatively, if we ensure that the memory address of each hashtable
are farther away (Far-KV), the performance improves. Our results indicate that Far-KV
has the best performance and is 4.4× faster than Map, and 1.3× faster than Close-KV .

4.2 Our optimized Louvain implementation

A flow diagram illustrating the first pass of GVE-Louvain for a Weighted 2D-vector
based or a Weighted CSR with degree based input graph, is shown in Figure 2. In the
local-moving phase, vertex community memberships are updated until the total change
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Fig. 1: Impact of various parameter controls and optimizations on the runtime and mod-
ularity of the Louvain algorithm. The impact upon relative runtime is shown as colored
bars on the left y-axis, and upon relative modularity as a blue line on the right y-axis.

in delta-modularity across all vertices reaches a specified threshold. Community mem-
berships are then counted and renumbered. In the aggregation phase, community ver-
tices in a CSR are first obtained. This is used to create the super-vertex graph stored in a
Weighted Holey CSR with degree. In subsequent passes, the input is a Weighted Holey
CSR with degree and initial membership for super-vertices from the previous pass. The
detailed algorithm of GVE-Louvain is included in our extended report [21].

We aim to incorporate GVE-Louvain into our upcoming command-line graph pro-
cessing tool named “GVE”, derived from “Graph(Vertices, Edges)”. GVE-Louvain ex-
hibits a time complexity of O(KM), where K signifies the total iterations conducted.
Its space complexity is O(TN +M), where T denotes the number of threads utilized,
and TN represents the collision-free hash tables Ht employed per thread.

Input Graph

Weighted vector2d /
Weighted CSR with degree

Initial Community 
memberships

Local-moving

Pass 1

Updated Community 
memberships

Counting & Renumbering

Pass 1

Renumbered Community 
memberships

Aggregation

Pass 1

Community vertices

Plain CSR

Super-vertex Graph

Weighted Holey CSR with 
degree

Initial Super-vertex 
Community memberships

Local-moving

Pass 2

Fig. 2: A flow diagram depicting the first pass of GVE-Louvain.

5 Evaluation

5.1 Experimental Setup

System used We use a server that has two 16-core x86-based Intel Xeon Gold 6226R
processors running at 2.90 GHz. Each core has an L1 cache of 1 MB, an L2 cache of 16
MB, and a shared L3 cache of 22 MB. The machine has 93.4 GB of system memory and
runs on CentOS Stream 8. For our GPU experiments, we employ a system featuring an
NVIDIA A100 GPU (108 SMs, 64 CUDA cores per SM, 80 GB global memory) paired
with an AMD EPYC-7742 processor (64 cores, 2.25 GHz). This server is equipped with
512 GB of DDR4 RAM and operates on Ubuntu 20.04.
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Configuration We employ 32-bit integers for vertex IDs and 32-bit floats for edge
weights, but use 64-bit floats for both computations and hashtable values. Our imple-
mentation leverages 64 threads to align with the number of cores on the system, unless
otherwise specified. For compilation, we use GCC 8.5 and OpenMP 4.5 on the CPU
system, while on the GPU system, we use GCC 9.4, OpenMP 5.0, and CUDA 11.4.

Dataset The graphs used in our experiments are given in Table 1. These are sourced
from the SuiteSparse Matrix Collection [14]. The graphs have vertex counts ranging
from 3.07 to 214 million and edge counts ranging from 25.4 million to 3.80 billion.
We ensure that the edges are undirected and weighted, with a default weight of 1.
We avoid using SNAP datasets with ground-truth communities because they are non-
disjoint, whereas our work focuses on disjoint communities. Importantly, ground truth
communities may represent different or unrelated aspects of the network structure —
relying solely on this correlation could overlook other meaningful structures [19].

Table 1: List of 13 graphs from the SuiteSparse Matrix Collection [14] (∗ ⇒ directed).
Here, |V | is the vertex count, |E| the edge count (including reverse edges), Davg the
average degree, and |Γ | the number of communities obtained using GVE-Louvain.

Graph |V | |E| Davg |Γ | Graph |V | |E| Davg |Γ |

Web Graphs (LAW) Social Networks (SNAP)
indochina-2004∗ 7.41M 341M 41.0 4.24K com-LiveJournal 4.00M 69.4M 17.4 2.54K

uk-2002∗ 18.5M 567M 16.1 42.8K com-Orkut 3.07M 234M 76.2 29
arabic-2005∗ 22.7M 1.21B 28.2 3.66K Road Networks (DIMACS10)

uk-2005∗ 39.5M 1.73B 23.7 20.8K asia osm 12.0M 25.4M 2.1 2.38K
webbase-2001∗ 118M 1.89B 8.6 2.76M europe osm 50.9M 108M 2.1 3.05K

it-2004∗ 41.3M 2.19B 27.9 5.28K Protein k-mer Graphs (GenBank)
sk-2005∗ 50.6M 3.80B 38.5 3.47K kmer A2a 171M 361M 2.1 21.2K

kmer V1r 214M 465M 2.2 6.17K

5.2 Comparing Performance of GVE-Louvain

We now compare the performance of GVE-Louvain with Vite (Louvain) [9], Grap-
polo (Louvain) [12], NetworKit Louvain [24], and cuGraph Louvain [13]. For Vite,
we convert the graph datasets to Vite’s binary graph format, run it on a single node
with threshold cycling/scaling optimization, and measure the reported average total
time. For Grappolo, we measure the run it on the same system, and measure the re-
ported total time. For NetworKit Louvain, we use a Python script to invoke PLM (Par-
allel Louvain Method), and measure the total time reported with getTiming(). To
test cuGraph’s Louvain algorithm, we write a Python script that configures the Rapids
Memory Manager (RMM) to use a pool allocator for fast memory allocations. We then
execute cugraph.louvain() on the loaded graph. For each graph, we measure
the runtime and the modularity of the obtained communities (as reported by each im-
plementation), performing five runs to calculate an average. When using cuGraph, we
discard the runtime of the first run to ensure that subsequent measurements accurately
reflect RMM’s pool usage without the overhead of initial CUDA memory allocation.



High-Perf. Impl. of Louvain Algorithm with Representational Optimizations 9

 0.1

 1

 10

 100

 1000

 10000

indochina-2
004

uk-2
002

ara
bic-2

005
uk-2

005

webbase
-2001

it-2
004

sk-
2005

com-Liv
eJo

urnal

com-Orku
t

asia
_osm

europ
e_osm

km
er_

A2a

km
er_

V1r

R
u

n
ti

m
e 

(s
)

Vite (Louvain) Grappolo (Louvain) NetworKit Louvain cuGraph Louvain GVE-Louvain

28 37

10
4

89

48
0

12
4 28

3

25 36 38

13
5

61
7

77
3

24

13 18

40 44

73 47 34

77 55 73 95 14
5

12 18

41 43

11
6

51 70

7 8 16

80

29
8

39
1

7.
5

10
.5

5.
2

25
.4

3.
1 6.

0

5.
1

6.
0

1.
4 4.

1

3.
9

2.
7 6.

8

1.
2 2.

8

1.
3 1.
6

10
.9

15
.3

0.
65

0.
71

(a) Runtime in seconds (logarithmic scale) with Vite (Louvain), Grappolo (Louvain), NetworKit
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(c) Modularity of communities obtained with Vite (Louvain), Grappolo (Louvain), NetworKit
Louvain, cuGraph Louvain, and GVE-Louvain.

Fig. 3: Runtime in seconds (logarithmic scale), speedup, and modularity of communi-
ties obtained with Vite (Louvain), Grappolo (Louvain), NetworKit Louvain, cuGraph
Louvain, and GVE-Louvain for each graph in the dataset.

Figure 3(a) shows the runtimes of Vite (Louvain), Grappolo (Louvain), NetworKit
Louvain, cuGraph Louvain, and GVE-Louvain on each graph in the dataset. cuGraph’s
Louvain algorithm fails to run on arabic-2005, uk-2005, webbase-2001, it-2004, and
sk-2005 graphs because of out-of-memory issues. On the sk-2005 graph, GVE-Louvain
finds communities in 6.8 seconds, and thus achieve a processing rate of 560 million
edges/s. Figure 3(b) shows the speedup of GVE-Louvain with respect to each imple-
mentation mentioned above. GVE-Louvain is on average 50×, 22×, 20×, and 5.8×
faster than Vite, Grappolo, NetworKit Louvain, and cuGraph Louvain respectively.
Figure 3(c) shows the modularity of communities obtained with each implementation.
GVE-Louvain on average obtains 3.1% higher modularity than Vite (especially on web
graphs), and 0.6% lower modularity than Grappolo and NetworKit (especially on so-
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cial networks with poor clustering), and 2.6% higher modularity than cuGraph Louvain
(primarily because cuGraph Louvain failed to run on graphs that are well-clusterable).
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Fig. 4: Phase split of GVE-Louvain shown on the left, and pass split shown on the right
for each graph in the dataset.
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Fig. 5: (a) Runtime /|E| factor with GVE-Louvain for each graph in the dataset. (b)
Overall speedup of GVE-Louvain, and its various phases (local-moving, aggregation,
others), with increasing number of threads (in multiples of 2).

5.3 Analyzing Performance of GVE-Louvain

The phase-wise and pass-wise split of GVE-Louvain is shown in Figures 4(a) and 4(b)
respectively. Figure 4(a) indicates that GVE-Louvain spends most of the runtime in the
local-moving phase on web graphs, road networks, and protein k-mer graphs, while it
devotes majority of the runtime in the aggregation phase on social networks. The pass-
wise split (Figure 4(b)) indicates that the first pass dominates runtime on high-degree
graphs (web graphs and social networks), while subsequent passes prevail in execution
time on low-degree graphs (road networks and protein k-mer graphs).

On average, 49% of GVE-Louvain’s runtime is spent in the local-moving phase,
35% is spent in the aggregation phase, and 16% is spent in other steps (initialization,
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renumbering communities, looking up dendrogram, and resetting communities) of the
algorithm. Further, 67% of the runtime is spent in the first pass of the algorithm, which
is the most expensive pass due to the size of the original graph (later passes work on
super-vertex graphs) [27].

We also observe that graphs with lower average degree (road networks and protein
k-mer graphs) and graphs with poor community structure (such as com-LiveJournal
and com-Orkut) have a larger runtime/|E| factor, as shown in Figure 5(a).

5.4 Strong Scaling of GVE-Louvain

Finally, we measure the strong scaling performance of GVE-Louvain. To this end, we
adjust the number of threads from 1 to 64 in multiples of 2 for each input graph, and
measure the overall time taken for finding communities with GVE-Louvain, as well as
its phase splits (local-moving, aggregation, others), five times for averaging. The results
are shown in Figure 5(b). With 32 threads, GVE-Louvain obtains an average speedup
of 10.4× compared to running with a single thread, i.e., its performance increases by
1.6× for every doubling of threads. Scaling is limited due to the various sequential
steps/phases in the algorithm. At 64 threads, GVE-Louvain is impacted by NUMA ef-
fects, and offers speedup of only 11.4×.

6 Conclusion

This paper presented our parallel multicore implementation of the Louvain algorithm
— a high quality community detection method, which, as far as we are aware, stands
as the most efficient implementation of the algorithm on multicore CPUs. Here, we
explored 9 different optimizations, including 4 novel ones aimed at enhancing the ag-
gregation phase, which collectively, significantly improve the performance of both the
local-moving and the aggregation phases of the algorithm. Future work could focus
of designing fast community detection algorithms that enable interactive updation of
community memberships of vertices in large dynamic graphs.
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