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Abstract—Due to high effectiveness and robust security proto-
cols, lattice-based cryptography becomes a very broadly applicable
optimistic post-quantum technique that is recently used in public
key cryptosystem. An aggregate signature scheme enables a party
to bundle a set of signatures together into a single short crypto-
graphic signature, which can be verified by any verifier using the
public information. In this paper, we provide a lattice-based aggre-
gate signature scheme where the security depends on the difficulty
of the Ring Learning-with-Error (Ring-LWE) problem. Next, we
use the basic scheme in Internet of Drones (IoD) applications using
the blockchain technology for secure and transparent data storage.
The detailed security analysis and comparative study show that the
proposed scheme provides superior security including resistance
to quantum attacks and is efficient as compared to the existing
state of art approaches. The testbed experimental results and the
blockchain simulation demonstrate that the proposed scheme can
be applied in real-life drones applications.

Index Terms—Aggregate signature, blockchain, Internet of
Drones (IoD), lattice-based cryptography, security, unmanned
aerial vehicles.

I. INTRODUCTION

THE exposure of quantum computers becomes a menacing
on the security of the traditional public-key cryptosys-

tem. Shor [1] mentioned that the existing mathematical number
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theoretic hard problems, like “Integer Factorization Problem
(IFP) in RSA public key cryptosystem” and “Discrete Logarithm
Problem (DLP) in ElGamal cryptosystem” are not safe under the
quantum computing scenario. Traditional digital signature is a
basic cryptographic primitive which has various applications,
like verifying the authenticity and integrity of the received
messages. One of most noteworthy post-quantum cryptosystem
that has broadly applicable on traditional security domain is
the “Lattice-based Cryptography (LBC)”. The security of the
quantum resistance lattice-based signature scheme is based on
the difficulty of some problems, like “Shortest Integer Solution
(SIS)” assumption and “Learning With Error (LWE)” assump-
tion [2]. The SIS and LWE assumptions are both computa-
tional assumptions. Generally, the LWE-oriented lattice-based
signature schemes contain an enormous memory. To reduce the
memory space, a new trend has been introduced, which is called
the ring lattice-based signature scheme (Ring-LBS), where the
security of a Ring-LBS scheme is based on the Ring-LWE and
Ring-SIS assumptions.

An aggregate signature [3] basically merges a group of signa-
tures which are connected with different messages and forms a
single compact signature. The aggregate signature provides au-
thenticity to the group of message-signature pairs corresponding
to the group of signers in a single step. It is primarily used to
reduce the required storage space of the signature, and hence,
it reduces the required network bandwidth for transmission and
the number of signature verification computations. Thus, for
designing a quantum resistance aggregate signature scheme,
a lattice-based aggregate signature scheme plays a significant
role [4].

The Internet of Things (IoT) is considered as a system of
interrelated computing smart devices or objects (things) that are
provided with “unique identifiers (UIDs)” and the connected
devices have the ability to send the data over a network with-
out needing “human-to-human” or “human-to-computer inter-
action”. The drones, also called as unmanned aerial vehicles
(UAV), related futuristic disruptive technologies, such as “quan-
tum drones (QD),” “Internet of Quantum Drones (IoQDs),” and
“constellation of quantum satellites (CQS)” are supposed to be
a breakthrough technology in strategic fields of society [5]. It is
also expected that the “quantum device-integrated over drones”
can be developed in near future for any storage, computation
and communication [5].
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In an Internet of Drones (IoD) environment, multiple drones
are deployed in a particular flying zone or an application area
and they are connected in the IoD environment [6], [7], [8]. As
a result, an aggregate signature scheme is considered as one of
promising security solutions for resolving privacy and security
issues in the IoD network [9]. The drones in an application
collect the data and send their data along with the individual
signatures to an aggregator node, called the ground station server
(GSS). TheGSS then validates all the individual signatures and
forms an aggregate signature on the collected signed messages.
The aggregate message along with their compact aggregate
signature are then sent to the cloud server for data storage
purpose into the public blockchain. Any verifier can verify the
data integrity of the aggregate message by means of applying
the aggregate signature verification algorithm.

A. Research Contributions

In the following, we list the main contributions made in this
article:
� An efficient lattice-based aggregate signature scheme has

been proposed, whose security is based on the hardness
of the lattice-based “Ring-Learning-with-Error (LWE)
problem”. The designed lattice-based aggregate signature
scheme is then applied for the real-time IoD applications,
where the drones play the role of individual signers and the
GSS plays the role of an aggregator. After verifying the
signatures, the in-charge cloud server in the “Peer-to-Peer
(P2P) cloud servers network” creates blocks and mine them
using the voting-based consensus algorithm to add in the
public blockchain for secure data storage.

� The formal and informal security analysis has been per-
formed on the proposed scheme to show its robustness
against various attacks including the quantum attacks based
on the proposed threat model discussed in Section II-B.

� A testbed experiment has been conducted to implement
the proposed lattice-based aggregated signature scheme
(LBAS) to measure computational time needed for single
and aggregate signature generation and verification under
the setting of a drone, a GSS and a cloud server.

� A blockchain simulation has been provided to measure
the computational time needed for mining the blocks in
the blockchain by varying the number of transactions and
blocks in the chain. A comprative study also reveals the
efficiency and security of the proposed scheme over the
existing competing schemes.

B. Outline

The various systems models like network and threat models
are presented in Section II. Using the mathematical preliminaries
presented in Section III, we present the lattice-based aggregate
signature scheme (LBAS) in Section IV. Next, in Section V, we
describe how the designed LBAS is applied for the real-time
IoT-enabled drones applications using the public blockchain.
The formal and informal security analysis of the proposed
scheme is presented in Section VI. Sections VII and VIII provide
the real testbed experiments and blockchain simulation of the

Fig. 1. Network model used in IoD applications.

proposed scheme, respectively. After that, the related work
and a comparative analysis are conducted in Section IX. Some
concluding remarks are finally drawn in Section X.

II. SYSTEM MODELS

In this section, we first mention the network model used in the
proposed blockchain-based aggregate signature scheme for IoD
applications. Next, we discuss the threat model that is applied
for analyzing the security of the proposed scheme.

A. Network Model

In the proposed scheme, we consider a network model as
shown in Fig. 1. In the network model, the participating entities
in the network include: 1) drones, 2) ground station servers
(GSS), 3) control room, acting as the key generation center
(KGC), and 4) cloud servers. IoD has several potential applica-
tions as mentioned in Fig. 1. For example, consider the delivery
system using drones. In such a scenario, drones play an important
role as “a valid alternative to support the delivery method and
various big companies, like Amazon and DHL, have initiated
to apply the drones for their parcels deliveries” [10]. Due to
difficult and inaccessible terrains, there are some areas which
may not be easily accessible for collection of data. In this case,
the drones can be deployed in those areas to efficiently aggregate
more detailed information with less time and low cost [11]. The
use of drones in ecology also helps in smart wildlife monitoring
to see the “impact of ongoing global change,” improve the
“Earth’s biodiversity system,” and also predict the “future trends
of ecology and its development” [12]. Consider other important
applications using the drones, such as “smart farming” and
“Precision Agriculture (PA),” where the “aerial remote sensing”
is typically most applied technology. Drone monitoring systems
in such cases will be helpful to the farmers to take various
observation with the help of the aerial views of the harvest. This
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allows to gather various information, like the water system, soil
variety, fungal infestations and pests [13].

The role of a drone is to gather the data from its deployed ap-
plication area or flying zone and sign the message (sensing data)
being a signer. The drones are equipped with the IoT-enabled
smart devices like “Global Positioning System (GPS),” cameras,
frames, flight controller and transceiver. The GSS is treated as
an aggregator node whose task is to aggregate the individual
signed messages from its member drones. The GSS performs
individual signature verification, creates an aggregate signature
on the received signed messages and then sends to a cloud server
to store in the blockchain network consisting of the “Peer-to-Peer
(P2P) cloud servers network” through the consensus algorithm.
The in-charge cloud server checks the validity the aggregate
signature, creates blocks and mine them for adding into the
public blockchain.

The control room recognized as KGC has the responsibility
to register all drones and GSSs by generating their private
and public keys pairs using the lattice-based key generation
algorithm. The control room is treated as a fully-trusted entity,
whereas the GSSs are considered as semi-trusted entities in
the network. Both the control room and the GSSs are placed
under physical locking system in order to protect them from the
attackers. The cloud servers in the P2P network are treated as
semi-trusted entities. Once the registration process is over, the
drones and the in-charge GSS can be deployed in their func-
tioning zone. The cloud servers participated in the distributed
system help in building a distributed technology for utilizing
the public blockchain storage.

B. Threat Model

In this work, we consider the following three types of adver-
sary models:
� Honest-but-Curious adversary model: Such as model [14]

represents a passive adversarial model. In this model, an
adversary, say F behaves as an authorized entity and fol-
lows a specified protocol. However,F can still intercept all
the information transmitted among the corrupted entities in
the network.

� Dolev-Yao (DY) threat model: The DY model [15] allows
an adversary F not only to intercept the communicated
messages, but also to modify, insert and erase the messages
that are being transmitted between various agents in the
network.

� Canetti and Krawczyk’s model: This model known as the
“CK-adversary model” [16] has all the capabilities of an ad-
versary under the DY model. In addition, the CK-adversary
model allows the adversary F to compromise the “secret
keys, secret credentials, and session states through the
session hijacking attacks”. As a result, “leakage of the short
term secrets can lead to disclose the session key and other
secrets” [16].

The drones deployed in the flying zones can not be always
monitored 24× 7. Hence, there is a possibility to hijack or even
physically capture some drones in the network. The adversary
F can then take advantage of using the compromised drones
to extract all the credentials stored in their memory using the

“power analysis attacks” [17]. Moreover, apart from the tradi-
tional number theoretic attacks, F can also launch the quantum
attacks.

III. PRELIMINARIES

Let N be the “set of all natural numbers,” Z be the “set of
all integers,” and for v ∈ N define f = 2v ∈ N. Assume p is
a large prime such that p ≡ 1 (mod 2f) and the finite field
Z/pZ is represented as Zp where Zp = {0, 1, . . . , p− 1}. Now,
define R = Z[x]/〈xf + 1〉, Rp = Zp[x]/〈xf + 1〉, Rp,k ⊂ Rp

such that Rp,k = {g(x) ∈ Rp, where the degree of g(x) is
at most f − 1, all the co-efficients of g(x) ∈ [−k, k]}, with
0 < k ≤ p−1

2 andDf
32, with f ≥ 512, consists of all polynomials

of degree at most f − 1 that have all zero co-efficients except at
most 32 co-efficients that are+1 or−1. In addition, we define H̃ :
Rp → Rp,1, and H: {0, 1}∗ → Df

32 as two collision-resistance
one way hash functions.

A. Computational Hard Problems

In this section, we define the following computational hard
problems that are associated with the lattice-based cryptography.

1) Learning-With-Error (LWE): Assume that s ∈R Zf
p be

a fixed vector and χ be an error distribution over Z. The
“Learning-with-Error (LWE)” problem is define as follows [18].
Choose a vector a ∈ Zf

p from a uniform distribution over Zf
p

and a number e ∈ Z, and then compute t = a.s+ e (mod p).
Given m (≥ f) samples of the form: (ai, ai.s+ ei (mod p)),
where ai ∈ Zf

p and ei ∈ Z is the error, that is, sampled from
the error distribution χ, recover unique random secret s, for all
i = 1, 2, . . . ,m. Note that “if the secret s is sampled from the
same error distribution as e, the hardness assumption of the LWE
problem is still valid”.

2) Ring-LWE: At present, the security of most of the lattice
based multi-signature as well as aggregate signature schemes is
based on the hardness of Ring-LWE problem. The Ring-LWE
can be defined as follows [18]. Pick a ∈ R, s ∈R Rp as a
polynomial of degree at most f − 1 andχ as an error distribution
overR. DefineDs,χ, the Ring-LWE distribution, whose outputs
(a, a.s+ e (mod xf + 1)) are in Rp ×Rp, where e←R χ.
Choose ai ∈ R, for all i = 1, 2, . . . ,m. This problem is associ-
ated to recover the secret s ∈R Rp with the uniform distribution
over s ∈R Rp fromm (≥ f) samples of the form: (ai, ai.s+ ei
(mod xf + 1)), where ei ∈ R is the error with co-efficients
sampled from the error distribution χ.

3) Super NTRU-Encrypt: It is well-known that the secret key
size and the error size in the super NTRU encrypt problem
are small with respect to standard LWE problem. To solve
LWE problem with smaller secrets and smaller error is as hard
as solving standard LWE problem. The super NTRU-encrypt
problem is defined as follows [19]. Given (a, t = (a.s+ 2e
(mod xf + 1))) ∈ Rp ×Rp, where a ∈ Rp, s ∈ {0, 1}n and
e ∈R {0, 1}n, to recover s from (a, t).

B. Lower-Order and Higher-Order Bits

Let Y ∈ [−(p− 1)/2, (p− 1)/2]
⋂

Z and k ∈ Z+. Then,
every Y can be uniquely expressed as follows [20]: Y = (2k +
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1)Y 1 + Y 0, where Y 0 ∈ [−k, k] and Y 1 = (Y − Y 0)/(2k +
1). Here, Y 0 is the “lower-order bits of Y ” and Y 1 are the
“higher-order bits of Y ”. These higher and lower order bits are
used in the proposed scheme.

C. Compression

We define the following compression techniqueCompress as
proposed in [20]. We are given p, f and k such that 2fk > p, and
two vectors, say y ∈ Rp and z ∈ Rp,k, where the co-efficients
of z are small. We can then replace z by a “much more
compressed vector z′ while keeping the higher-order bits of
y + z and y + z′ as the same”. We have the following results:
z′ ← Compress(y, z, p, k) where z′ ∈ Rp,k and (y + z)1 =
(y + z′)1.

D. Generalized Lattice-Based Signature Scheme

A generalized lattice-based signature scheme was proposed
in [20]. It consists of a set of algorithms, namely: 1) KeyGen,
2) Sign, and 3) Verification. A trusted authority, called a key
generation center (KGC), who generates the secret key as well
as public key for the signer. Note that Df

32, f ≥ 512 consists of
“all the polynomials of degree at most f − 1 that have all zero
co-efficients except at most 32 co-efficients that are +1 or−1”.
We take H : {0, 1}∗ → Df

32 as a “collision-resistance one way
hash function”.

1) KeyGen(1λ)→ (pk, sk): This algorithm runs by the
KGC, and produces a pair of secret key and public key as
follows.
� Pick a ∈R Rp, where a is chosen uniformly at random

from Rp. Also, pick (s1, s2) which are uniformly taken at
random from Rp,1, that is, (s1, s2) ∈R Rp,1 ×Rp,1.

� Compute t = a.s1 + s2 (mod xf + 1).
� Set secret key as sk =(s1, s2) and the corresponding public

key as pk = (a, t) for the signer.
After generating the public and private keys, theKGC sends

the these key pair to the signer through a secure channel.
2) Sign(sk,A,m)→ (sig1, sig2): The signer runs the Sign

algorithm to create a signature on a message m using its own
secret key sk as follows.

1) Choose (y1, y2) ∈R Rp,k ×Rp,k.
2) Compute c = H(a.y1 + y2,m), z1 = s1.c+ y1

(mod x)f + 1, and z2 = s2.c+ y2 (mod xf + 1).
3) If z1 or z2 /∈ Rp,k−32, go to Step 1.
4) Output (z1, z2, c).

The created signature onm is (z1, z2, c). The signer then sends
the signed message (m, (z1, z2, c)) to the verifier via public
channel.

3) V erification(sig1, sig2)→ (V alid/Invalid): After
receiving the signed message (m, (z1, z2, c)), the verifier runs
the Verification algorithm, which is given below.
� Check if z1 or z2 ∈ Rp,k−32. If it is not valid, reject the

signature and return Invalid.
� Check if c = H(a.z1 + z2 − t.c,m) holds or not. If it is

not valid, reject the signature and return Invalid.
� Accept the signature as valid and return V alid.

TABLE I
NOTATIONS AND THEIR MEANINGS

IV. PROPOSED LATTICE-BASED AGGREGATE SIGNATURE

SCHEME

This section describes the proposed lattice-based aggregate
signature scheme. The notations and their descriptions are pro-
vided in Table I, which are useful for analysis and discussion of
the proposed scheme.

The proposed scheme contains the five algorithms: a)
KeyGen, b) LSSign, c) LSVer, d) LASign and e) LAVer.
In the proposed scheme, there is a trusted authority (KGC), n
number of signers and an aggregator. The KGC has the master
secret key msk and the corresponding master public key mpk.
Using msk and mpk, the KGC runs the KeyGen algorithm
in order to generate the secret key and the public key for each
signer as well as for aggregator. After execution of theKeyGen
algorithm, the KGC sends the associated secret key and public
key pair to each signer as well as aggregator. After receiving the
secret key, each signer, being the ith signer, will sign a message
mi using its own secret key to generate the associated signa-
ture using the lattice-based LSSign algorithm, and send the
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generated signature to the aggregator. The aggregator then veri-
fies all the received signatures of the n signers using the lattice-
based LSV er algorithm. If all the signatures are valid, then
only the aggregator runs the lattice-based aggregate signature
algorithmLASign to generate the combined compact signature
on all the verified signatures received from the signers by using
its own secret key. Finally, the aggregator sends the associated
aggregate signature to the verifier for signature verification.

The details of these algorithms are discussed below.

A. KeyGen

This algorithm is executed by the KGC using the following
steps:
� The KGC chooses (s1, s2) ∈ Rp ×Rp in such a way that

the co-efficients of the polynomials s1 and s2 come from
[−(p− 1)/2, (p− 1)/2] and a ∈R Rp. The KGC then
sets its master secret key msk and master public key mpk
as (s1, s2) and a, respectively.

� The KGC selects (n+ 1) distinct positive integers k1,
k2, . . . , kn, and kIDAgg

from the range [−(p− 1)/2, (p−
1)/2] in such a way that ki <

√
p, for all i = 1, 2, . . . , n,

IDAgg for the n signers and the aggregator, respectively.
For the ith-signer, where i ∈ {1, 2, . . . , n}⋃{IDAgg},
then KGC computes s1 = (2ki + 1)s1

i,1 +s0
i,1 and s2 =

(2ki + 1)s1
i,2 +s

0
i,2, where the co-efficients of s0

i,1, s
0
i,2 are

from [−ki, ki]. Note that s1
i,1 and s1

i,2 are the higher order
bits of s1 and s2, respectively.

� For each ith signer and the aggregator, where i ∈
{1, 2, . . . , n}⋃ IDAgg, the KGC chooses a “one-way
collision-resistance hash function” of the type: H̃ : Rp −→
Rp,1, which maps the inputs (s0

i,1, s
0
i,2) to the output

(s0
i,1, s

0
i,2) in Rp,1. The KGC then computes ti = a.s0

i,1

+s0
i,2 (mod xf + 1) and generates the associated secret

key ski = (s0
i,1, s

0
i,2) and the public key pki = ti for each

ith signer and the aggregator, respectively.
The Small Integer Solution (SIS) problem in the lattice-based

setting consists of the following [21]:
� SISp,n,m,k-distribution: Pick a matrix A randomly from
Zn×m
p and a vector s← {−k,−k + 1, . . . , 0, . . . , k −

1, k}m, where 0 < k ≤ p−1
2 . Generate the output (A,As).

� SISp,n,m,k-search problem: Given an output (A, t) of the
SISp,n,m,k-distribution, find an element s← {−k,−k +
1, . . . , 0, . . . , k − 1, k}m for which As = t is satisfied.

� SISp,n,m,k-decision problem: Given a pair (A, t), there is
a negligible probability to decide if it is from SISp,n,m,k-
distribution or uniform distribution over Zn×m

p × Zn
p .

Based on the results reported in [21], we have the following
claims:

Claim 1: If k ≥ pn/m, where m = 2n, for any A ∈ Zn×m
p

and a uniformly chosen s← {−k,−k + 1, . . . , 0, . . . , k −
1, k}2n, there exists another s′ ← {−k,−k + 1, . . . , 0, . . . , k −
1, k}2n with s′ �= s, such that As = As′ is satisfied.

Claim 2: If k < pn/m with m = 2n, for any A ∈ Zn×m
p

and a uniformly chosen s← {−k,−k + 1, . . . , 0, . . . , k −
1, k}2n, there does not exist any different s′ ← {−k,−k +
1, . . . , 0, . . . , k − 1, k}2n for which As = As′ is satisfied.

It is observed that the SIS problem classically reduces to
the LWE problem [21]. Furthermore, the LWE problem also
reduces to the Ring-LWE problem. Therefore, Claim 1 implies
that in the Ring-LWE problem, if k ≥ pn/m with m = 2n, that
is, k ≥ √p, the probability of randomly selecting a colliding
element is very high. Claim 2 also implies that if k <

√
p,

only one solution exits with high probability. Otherwise, when√
p < k � p, solving worst-case lattice problem in the ideal

lattice will be computationally hard problem. Based on the above
results, it is worth to notice the following observations [20]: 1)
if ki ≥ √p, the solution will not be unique, 2) if

√
p < ki � p,

solving worst-case lattice problem in the ideal lattice will be a
computationally hard, and 3) if ki <

√
p, only one solution exits

with a high probability.

B. LSSign

Each ith signer has its own secret key and public key pair
(ski, pki). Suppose the ith signer wants to generate the signature
on a message mi ∈ {0, 1}∗. The execution of the LSSign
signature generation algorithm by the signer has the following
steps:

1) The ith signer first picks randomly yi1, yi2 from Rp,ki
,

computes ci ← H(((a.yi1 +yi2) ||mi)
1), zi1 ← s0

i,1ci +

2yi1 (mod xf + 1) and zi2 ← s0
i,2ci + 2yi2 (mod xf +

1), and then sets Zi = (zi1, z
i
2) for all i = 1, 2, . . . , n.

2) The ith signer checks whether zi1 or zi2 ∈ Rp,2ki−32. If it
is not so, go to Step 1. Otherwise, the signature together
with the message mi will be taken as ((Zi, ci),mi), that
is, (((zi1, z

i
2), ci),mi).

C. LSVer

In order to check whether the signed message (((zi1, z
i
2),

ci),mi) of the ith signer is valid or not, the aggregator being
a verifier, needs to execute the lattice-based single message
signature verification algorithm, LSV er, with the following
steps:
� The aggregator first checks whether zi1 or zi2 ∈ Rp,2ki−32.

If the verification fails, the signature is rejected.
� The aggregator computes

c∗i ← H

(((
azi1 + zi2 − ci.ti

2

)
||mi

)1
)

(1)

and verifies if c∗i = ci holds or not. If it holds, the aggre-
gator accepts the signature on the message mi as valid.

In LSVer, ci ← H(((a.yi1 +yi2) ||mi)
1), zi1 ← s0

i,1ci + 2yi1
(mod xf + 1) and zi2 ← s0

i,2ci + 2yi2 (mod xf + 1). It is
noted that both zi1 and zi2 are the polynomials of degree at most
f − 1 whose coefficients are from [−(2ki − 32), (2ki − 32)].
This is because from the rejection sampling algorithm [21],
the signature turns out to be valid if sup-norms of zi1 and zi2
are less than or equal to 2ki − 32, that is, ||zi1||∞ ≤ (2ki −
32) and ||zi2||∞ ≤ (2ki − 32). Next, assume that an adversary
changes the message mi to m′i and sends the signed message
(((zi1, z

i
2), ci),m

′
i)of the ith signer to the aggregator. In that case,

the aggregator first checks whether zi1 and zi2 ∈ Rp,2ki−32. If it is

so, the aggregator proceeds to compute c∗∗1 =H(((
azi

1+zi
2−ci.ti
2 )
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||m′i)1) = H(((a(s0
i,1ci + 2yi1 (mod xf + 1)) + (s0

i,2ci + 2yi2
(mod xf + 1))− ci.ti)/2 ||m′i)1) = H(((a.yi1 +yi2) ||m′i)1).
This implies that c∗∗i �= ci. In other words, the signature will be
rejected. The validity of the signature correctness proof in LSVer
is further provided in Theorem 1.

D. LASign

After receiving the individual signatures (((zi1, z
i
2), ci),mi)

on the messagemi, i = 1, 2, . . . , n, the aggregator verifies each
associated signature. If all the associated signatures are valid,
then only the aggregator executes the lattice-based aggregate
signature generation algorithm,LASign, on the combined mes-
sage (m1,m2, . . . ,mn) using the following steps:
� The aggregator first computes m′ = H((Z1, c1,m1) || · · ·
||(Zn, cn,mn)), where Zi = (zi1, z

i
2).

� The aggregator then chooses randomly yAgg
1 , yAgg

2 from
Rp,kIDAgg

, and computes cAgg ← H(((a.yAgg
1 + yAgg

2 )

||m′)1). After that the aggregator determines the associated
aggregate signature by computing zAgg

1 ← s0
IDAgg,1

cAgg

+2yAgg
1 (mod xf + 1) and zAgg

2 ← s0
IDAgg,2

cAgg

+2yAgg
2 (mod xf + 1). Let ZAgg = (zAgg

1 , zAgg
2 ).

� The aggregator now verifies if zAgg
1 or zAgg

2 ∈
Rp,2kIDAgg

−32. If it is not so, go to Step 1. Otherwise, the
aggregate signature on the combined message (m1, m2,
. . . ,mn) is treated as (ZAgg, cAgg). Finally, the aggregator
sends the aggregate signature (ZAgg, cAgg) along with
{(zi1, zi2, ci, mi) |i = 1, 2, . . . , n} to the verifier.

E. LAVer

After receiving the aggregate signature (ZAgg, cAgg) along
with {(zi1, zi2, ci, mi) |i = 1, 2, . . . , n}, the verifier executes
the lattice-based aggregate signature verification algorithm,
LAV er, with the following steps:
� The verifier sets m∗ =H((z1

1 , z
1
2 , c1, m1) || · · · ||(zn1 , zn2 ,

cn, mn)).
� The verifier checks whether zAgg

1 , zAgg
2 ∈ Rp,2kIDAgg

−32

or not. It the verification holds, the verifier calculates

c∗Agg←H

⎛
⎝((a.zAgg

1 +zAgg
2 −cAgg.tIDAgg

2

)
||m∗

)1
⎞
⎠ .

(2)

� The verifier validates if c∗Agg = cAgg . If it holds, the ag-
gregate signature is valid.

It is noted that both zAgg
1 and zAgg

2 are the polynomi-
als of degree at most f − 1 whose coefficients are from
[−(2kIDAgg

− 32), (2kIDAgg
− 32)]. From the rejection sam-

pling algorithm [21], the signature becomes valid when the
sup-norms of zAgg

1 and zAgg
2 are less than or equal to 2kIDAgg

−
32, that is, ||zAgg

1 ||∞ ≤ (2kIDAgg
− 32) and ||zAgg

2 ||∞ ≤
(2kIDAgg

− 32). In addition, the validity of the signature cor-
rectness proof in LAVer is further provided in Theorem 2.

V. APPLYING LATTICE-BASED AGGREGATE SIGNATURE

SCHEME IN IOT-ENABLED DRONES APPLICATIONS

This section describes how the designed lattice-based aggre-
gate signature scheme mentioned in Section IV is applied for
the real-time IoD applications.

With respect to the network model shown in Fig. 1, there are
several entities in the network, like “drones,” “ground station
servers” (GSS), “control room” (CR) and “cloud servers”
(CS). The ncs cloud servers CSl, l = 1, 2, . . . , ncs, form a
“Peer-to-Peer (P2P) cloud servers (P2P CS) network,” known
as blockchain center (BC) which is mainly responsible to form
the blocks of received transaction from the respective GSS for
the drone applications and mine the blocks into the blockchain
center BC through consensus algorithm. For a particular ap-
plication, say DAppj , the in-charge GSSj will be responsible
to collect the data from the drones which contain in that appli-
cation. The control room (CR) is in-charge of registering the
drones and GSS for each drone application DAppj in offline
mode.

The involved phases are 1) “registration phase,” 2) “data
collection phase,” 3) “data aggregation phase,” 4) “blockchain
implementation phase,” and 5) “dynamic drone deployment
phase”. We assume that “the entities involved in the network
are synchronized with their clocks,” which is a reasonable as-
sumption [22], [23], [24]. The time-stamping mechanism helps
us to resist the replay attacks against an adversary. The notations
tabulated in Table I are also used to describe these various
phases.

A. Registration Phase

In this section, we discuss two types of registration processes
of a drone (DRi) and its associated GSSj for a particular
application DAppj . For DAppj , if ndr number of drones need
to be deployed, the control room (CR) will be responsible for
registering them prior to their deployment. In a similar way, the
in-charge GSSj for DAppj needs to be also registered by the
CR.

1) Drone Enrolment: To register a drone DRi, i =
1, 2, . . . , ndr in DAppj , the CR acting as the KGC executes
theKeyGen algorithm as discussed in Section IV-A to generate
the secret key ski =(s0

i,1, s
0
i,2) and the corresponding public key

pki = ti. In addition, the CR also generates a unique identity
IDDRi

for DRi. At the end, the CR pre-loads the informa-
tion {IDDRi

, (ski, pki)} into the memory of DRi before its
deployment in DAppj . The CR publishes the public key pki.

2) GSS Registration: In order to registerGSSj for the appli-
cationDAppj ,GSSj first selects an identity IDAggj and sends
it to the CR via a secure channel. Here, the CR acts as the
KGC. Next, the CR runs the KeyGen algorithm as discussed
in Section IV-A to generate the secret key skAggj = (s0

IDAggj
,1,

s0
IDAggj

,2) and the corresponding public key pkAggj = tIDAggj
,

and sends {skAggj , pkAggj} securely to the GSSj . Finally, the
GSSj stores {IDAggj , (skAggj , pkAggj )} in its secure database.
The CR also publishes pkAggj as public.
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B. Data Collection Phase

In this phase, each drone DRi in an application DAppj will
collect the data (information) from its flying zone for a particular
time period. The following steps are involved in this phase:

Step 1: Each DRi generates a current timestamp CTSDRi
,

creates a message as mi = {IDDRi
, IDAggj ,

(RTSstart, RTSend), DataDRi
, CTSDRi

} and
runs the LSSign signature generation algorithm
stated in Section IV-B to create the signature, say
SSigmi

on the message mi using its own secret key
ski = (s0

i,1, s
0
i,2) as follows:

SSigmi
=
((
zi1, z

i
2

)
, ci
)
. (3)

Here, RTSstart and RTSend denote the recorded
start time and end time for the data DataDRi

.
Step 2: DRi then creates a transaction TXDRi

of the form:
TXDRi

= {mi, SSigmi
, pki} and sends the “data

collection message” MsgDRi
= {TXDRi

} to the
corresponding GSSj via a public channel.

C. Data Aggregation Phase

In this phase, the associated GSSj residing in its applica-
tion DAppj collects the transactions from its various deployed
drones in the network. After that, theGSSj being an aggregator
Aggj executes the following steps:

Step 1: Suppose GSSj receives the “data collection mes-
sage”MsgDRi

= {TXDRi
} from the ith drone (i =

1, 2, . . . , ndr) inDAppj , at time TSDRi
. At first, the

GSSj checks the validity of the received timestamp
CTSDRi

by the condition: |CTSDRi
− TSDRi

| <
ΔT . If it is so, the message MsgDRi

is treated as
a fresh one. Otherwise, the phase is immediately
discarded by the GSSj .

Step 2: The GSSj then runs the LSV er signature verifica-
tion algorithm stated in Section IV-C on the message
mi with the help of DRi’s public key pki (i =
1, 2, . . . , ndr). If the signature is valid, the GSSj

treats the received transaction TXDRi
as valid.

Step 3: For all successfully validated tn transactions, say
TXDRi1

, TXDRi2
, . . . , TXDRitn

, the GSSj ex-
ecutes the LASign aggregate signature genera-
tion algorithm stated in Section IV-D to cre-
ate the aggregate signature ASigAggj on the ag-
gregated data: {(Sigmi1

,mi1), (Sigmi2
,mi2), . . . ,

(Sigmitn
,mitn )}, with the help of its own se-

cret key skAggj = (s0
IDAggj

,1, s
0
IDAggj

,2), where

ASigAggj = (ZAggj , cAggj ). Finally, the GSSj

sends the “data aggregation message” MsgAggj =
{(TXDRi1

, TXDRi2
, . . . , TXDRitn

), ASigAggj ,

pkAggj} to a cloud server, sayCSk, via open channel.

D. Blockchain Implementation Phase

This phase is executed by an in-charge cloud server CSk,
who receives the “data aggregation message” from its respective
GSS. Suppose the cloud server CSk in the P2P CS network

Fig. 2. Structure of a block.

receives MsgAggj = {(TXDRi1
, TXDRi2

, . . . , TXDRitn
),

ASigAggj} from GSSj . After that the following steps are
executed:

Step 1: CSk runs the aggregate signature verification al-
gorithm, LAV er stated in Section IV-E on (ml,
SSigml

), (l = i1, i2, . . . , itn), from the transactions
(TXDRi1

,TXDRi2
, . . . , TXDRitn

). If the aggregate
signature validation is successful, CSk executes the
next step; otherwise, this phase is discarded.

Step 2: CSk now forms a block, say, Block as shown
in Fig. 2 containing the transactions (TXDRi1

,
TXDRi2

, . . . , TXDRitn
), their aggregate signature

ASigAggj , public key of the aggregator pkAggj},
unique block version (BV er), Merkle tree root
(MTR), hash of the previous block in the chain
(PBH), block creation timestamp (TS), owner
of the block and current block hash (CBHash).
Note that for the blockchain purpose, we use the
“Secure Hash Algorithm (SHA-256)” that maps
any arbitrary string to 256-bit hash output. The
Merkle tree root is created on all the tn transac-
tions (TXDRi1

, TXDRi2
, . . . , TXDRitn

) present
in the block. The current block hash is computed
by hashing all the fields containing in the block as
CBHash = Hash(Block Header||Block Payload),
where Hash(·) is SHA-256 hash function.

Step 3: CSk then runs a leader selection algorithm as stated
in [25] to pick a leader from the P2P CS network. The
following voting procedure is used to elect the leader
from the cloud servers CSk (k = 1, 2, . . . , ncs)
present in the P2P CS network:

� Initially, all CSk’s are considered as the followers and
voting participants.

� Set a time threshold for finishing the voting process and
also start the voting process.

� A follower declares itself as a candidate in the voting
process and sends a request to other followers for a vote.
It then waits for the reply votes from the peer nodes.

� After receiving the reply votes from other followers, the
candidate checks whether the number of valid votes reaches
to a pre-defined threshold value for winning the vote or not.

� The candidate is declared as the winner if its threshold value
reaches to the required number of valid votes for winning
the vote prior to the voting process is finished.
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Fig. 3. Lattice-based aggregate signature scheme in action for an IoT-enabled drones application, DAppj , using blockchain.

� Once the leader is elected, it broadcast a message to the
entire P2P network for the block mining process.

� Similarly, other follower nodes can be elected as the leaders
for the next rounds of voting.

Step 4: Assume that L is elected as the leader among the
cloud servers CSk, (k = 1, 2, . . . , ncs). L then exe-
cutes a voting-based consensus algorithm for verify-
ing and mining the created block into the blockchain.
For this purpose, we apply the existing “Practical
Byzantine fault tolerance (PBFT)” [26] consensus
algorithm. The steps behind the consensus process
are given below:

� L broadcasts the block,Block, among all its peer nodes in
the network with a voting request.

� Each peer node then verifies the received block Block by
means of verifying the Merkle tree root, aggregate signa-
ture and current block hash on all the transactions present in
that block. If all the verifications pass successfully, Block
is treated to be valid one and the concerned peer node
will send a voting reply message with verification status
as “valid”.

� L maintains a counter, CtrL which is initialized to 0. For
all the valid voting reply messages from the peer nodes, L
increment CtrL by 1, that is, CtrL = CtrL + 1. Now, L
checks if CtrL exceeds more than a pre-defined threshold
value, 2 ∗ fcs + 1, where fcs denotes the number of faulty
nodes out of ncs nodes in the P2P CS network. If it is
so, L will send a “commit response” message to its all

(peer) follower nodes and add the blockBlock in its ledger.
After receiving the “commit response” message from L,
other peer nodes also add the same block Block in their
respective ledgers.

The overall scenario of the messages flow among various
entities is illustrated in Fig. 3.

E. Dynamic Drone Deployment Phase

An existing drone may be physically compromised according
to the threat model stated in Section II-B, because it may not be
possible to monitor 24 × 7 all the drones flying in the zones or
some drones may malfunction. Thus, it becomes to add some
new drones in the network after their initial deployment.

If a new drone DRnew
i needs to be deployed in an existing

drone application, say DAppj , the CR acting as the KGC will
execute the KeyGen algorithm as discussed in Section IV-A in

order to create the secret key sknewi = (s0,new
i,1 , s0,new

i,2 ) and the
corresponding public key pknewi = tnewi . Next, the CR gener-
ates a unique identity IDnew

DRi
for the deployedDRnew

i . Finally,
the CR stores the information {IDnew

DRi
, (sknewi , pknewi )} into

the memory of DRnew
i and publishes the public key pknewi .

VI. SECURITY ANALYSIS

In this section, we first provide the correctness proof of the
signature verification. Next, through the formal security analysis
under the standard model we prove the unforgeability of the
proposed lattice-based aggregate signature scheme presented in
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Section IV. Finally, through the informal (heuristic) security
analysis we also show that the proposed lattice-based aggregate
signature scheme applied in IoT-enabled drones applications is
robust against “potential attacks against a passive or an active
adversary”.

A. Correctness Proof

In the following, we proof the correctness of signature ver-
ifications of both the single signature and aggregate signature
stated in Sections IV-C and IV-E, respectively.

Theorem 1: In the proposed lattice-based single signature
verification stated in Section IV-C, if the condition c∗i = ci is
satisfied, the signature is valid.

Proof: We have the signature (Zi, ci) on a messagemi, where
Zi = (zi1, z

i
2), ci ← H(((a.yi1 +yi2) ||mi)

1), zi1 ← s0
i,1ci + 2yi1

(mod xf + 1) and zi2 ← s0
i,2ci + 2yi2 (mod xf + 1). After re-

ceiving the signed message, the aggregator computes c∗i ←
H(((

azi
1+zi

2−ci.ti
2 ) ||mi)

1).
To show c∗i = ci, it suffices to show that H(((a.yi1 +yi2)

||mi)
1) = H(((

azi
1+zi

2−ci.ti
2 ) ||mi)

1), that is, a.yi1 +yi2 =
azi

1+zi
2−ci.ti
2 . Now, azi1 + zi2 − ci.ti = a(s0

i,1ci + 2yi1) +

(s0
i,2ci + 2yi2)−ci(a.s0

i,1 + s0
i,2)= 2ayi1 + 2yi2 = 2(ayi1 + yi2).

Thus, azi
1+zi

2−ci.ti
2 = ayi1 + yi2. Hence, the signature is valid.�

Theorem 2: In the proposed lattice-based aggregate signature
verification stated in Section IV-D, if the condition c∗Agg = cAgg

is satisfied, the signature is valid.
Proof: We have cAgg ← H(((a.yAgg

1 + yAgg
2 ) ||m′)1)

and c∗Agg ← H(((
a.zAgg

i +zAgg
i −cAgg.tIDAgg

2 ) ||m∗)1).
To show c∗Agg = cAgg , it is sufficient to prove that
a.zAgg

1 +zAgg
2 −cAgg.tIDAgg

2 = a.yAgg
1 + yAgg

2 , and m′ = m∗.
Now,

a.zAgg
1 + zAgg

2 − cAgg.tIDAgg
= as0

IDAgg,1
cAgg + 2ayAgg

1

+ s0
IDAgg,2

cAgg + 2yAgg
2

− cAgg

(
a.s0

IDAgg,1
+ s0

IDAgg,2

)
= 2

(
ayAgg

1 + yAgg
2

)
. (4)

This means that
a.zAgg

1 +zAgg
2 −cAgg.tIDAgg

2 = a.yAgg
1 + yAgg

2 .
Again, m∗ = H((z1

1 , z
1
2 , c1, m1) || · · · ||(zn1 , zn2 , cn, mn))

= H((Z1, c1,m1) || · · · ||(Zn, cn,mn)) = m′. Hence, the ag-
gregate signature is valid. �

B. Formal Security Analysis

We say that the proposed lattice-based aggregated signature
scheme (LBAS) is unforgeable in the random oracle model under
the condition that the Ring-LWE must be a computationally hard
problem. In Theorem 1, we prove that LBAS is unforgeable
against an adversary based on the hardness of the computational
Ring-LWE problem defined in Section III-A2. Here, we apply
the generalized forking lemma [27].

Theorem 3: Assume that there exists an adversary (forger)
F who has a non-negligible probability, say εF , in breaking our

lattice-based aggregated signature scheme, LBAS= (KeyGen,
LSSign, LSV er, LASign, LAV er). Then, there exists a
simulatorCwho can solve an instance of the Ring-LWE problem,
with a non-negligible advantage εF

8qH
, where qH denotes the total

number of permissible hash queries.
Proof: Assume that the adversaryF can win the unforgeable

game played with the simulator C. Let the given Ring-LWE in-
stance beA =(a, 1) ∈ Rp × {1}, p ≡ 1 (mod 2f), f = O(λ),
λ is the security parameter. C then sets the public parameters
pp in the form: pp = (f, p, a, k1, k2, . . . , kn, kIDAgg

, H̃,

H), where ki <
√
p, for all i = 1, 2, . . . , n, IDAgg , and H̃:

Rp −→ Rp,1 and H: {0, 1}∗ → Df
32 are two cryptographically

secure collision resistance hash functions.
The simulator C chooses two random polynomials

(sdr1 , sdr2 ) ∈ Rp ×Rp for a drone DRi such that sdr1 = (2ki +
1)(s∗1)

i + (s∗∗1 )i and sdr2 = (2ki + 1)(s∗2)
i + (s∗∗2 )i. Similarly,

C chooses two random polynomials (sagg1 , sagg2 ) ∈ Rp ×
Rp for GSSj so that sagg1 = (2kIDAgg

+ 1)s∗IDAgg,1 +

s∗∗IDAgg,1 and sagg2 = (2kIDAgg
+ 1)s∗IDAgg,2 + s∗∗IDAgg,2. Now,

H̃((s∗∗1 )i) = (s∗∗1 )i, H̃((s∗∗2 )i) = (s∗∗2 )i, and H̃(s∗∗IDAgg,1) =

s∗∗IDAgg,1
, H̃(s∗∗IDAgg,2) = s∗∗IDAgg,2

, where ((s∗∗1 )i, (s∗∗2 )i) ∈
Rp,1 ×Rp,1 and (s∗∗IDAgg,1

, s∗∗IDAgg,2
) ∈ Rp,1 ×Rp,1. After that

C computes ti∗ = a.(s∗∗1 )i + (s∗∗2 )i and t∗IDAgg
= a.s∗∗IDAgg,1

+

s∗∗IDAgg,2
.

C then selects a random coin, say ∇ = (∂,W ), where W =
{y∗1 , y∗2 , . . . , y∗qH}, where each y∗i ∈ Rp,ki

×Rp,ki
for all i =

1, 2, . . . , qH , ∂ ∈ Rp, and y∗i is of the form: y∗i = ((yi1)
∗, (yi2)

∗).
C guesses an index l such that theF can forge y∗l involved in the
lth hash query. The C executes on the inputs t∗i , t

∗
IDAgg

, pp and
∇ to simulate the queries of F in the following way. Note that
F is to permitted to query as many as n hash queries as well as
n sign queries.

H-query: C first receives a hash H query on a message, say
mi. C maintains a list, say LH containing of the elements of the
form: {(mi, H((A.y∗i ||mi)

1)) : 1 ≤ j ≤ qH}. If the message
mi, 1 ≤ i ≤ qH , is queried before, C will return it from the list
LH . Otherwise, if it is queried for the first time, C needs to
honestly generate and return H((A.y∗i ||mi)

1) to the F . After
that C stores (mi, H((A.y∗i ||mi)

1)) in LH .
Signature Generation Query: When the F queries the ith

signature query on the message mi, where 1 ≤ i ≤ qS with
qH = qS , the simulator C first needs to validate if the pair
(mi, c

∗
i ) ∈ LH exists or not, where c∗i = H((A.y∗i ||mi)

1). If
it does not exist or i = l, for l ∈ {1, 2, . . . , qS}, is guessed at the
starting point of the game, then it is aborted; else, C will honestly
create the signature Z∗i for the honest signer i on the message
mi as follows:

i) Pick y∗i ∈ Rp,ki
×Rp,ki

.
ii) Calculate c∗i = H((A.y∗i ||mi)

1).
iii) Compute Z∗i = ((s∗∗1 )i, (s∗∗2 )i)c∗i + 2y∗i . If Z∗i /∈

Rp,2ki−32 ×Rp,2ki−32, repeat from Step (i). Otherwise,
return σmi

= (Z∗i , c
∗
i ,mi) to the F .

Aggregated H-query: F queries a hash-query on the message
m∗∗. The simulator C first calculatesm′ =H((Z∗1 , c

∗
1,m1) || · · ·

||(Z∗n, c∗n,mn)), where Z∗i = ((s∗∗1 )i, (s∗∗2 )i)c∗i + 2y∗i , and then
checks if m′ = m∗∗ holds or not. If it is not so, C aborts the
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message m∗∗. On the other side, the C verifies it in the list LH .
If it is queried before, C returns it from the list LH . If IDAgg =
l, where l ∈ {1, 2, . . . , qS} is guessed at the staring of the
game, then it is aborted; otherwise, C picks y∗Agg ∈ Rp,kIDAgg

×
Rp,kIDAgg

and calculates c∗Agg as c∗Agg = H((A.y∗Agg ||m∗∗)1).
Aggregated Signature Generation Query: When F queries

an aggregated signature query on the message m∗∗ to C, the
simulator C verifies if m∗∗ is an authenticated valid message or
not. Such a verification is performed using the following steps:

i) At first, C computes H((Z∗1 , c
∗
1, m1) || · · · ||(Z∗n, c∗n,

mn)) and checks if it matches with m∗∗.
ii) If the above verification does not hold, the C rejects m∗∗.

iii) Otherwise, C generates the aggregated signature as fol-
lows:

a) Choose y∗Agg ∈ Rp,kIDAgg
×Rp,kIDAgg

.

b) Generate c∗Agg = H((A.y∗Agg||m∗∗)1) and compute
Z∗Agg = (s∗∗IDAgg,1

, s∗∗IDAgg,2
).c∗Agg + 2y∗Agg.

c) The simulator C verifies if Z∗Agg ∈ Rp,2kIDAgg
−32 ×

Rp,2kIDAgg
−32 or not. If it is not so, start again from

Step (a). Otherwise, C sends σm∗∗ = (Z∗Agg, c
∗
Agg, m

∗∗,
t∗IDAgg

) to F .
Now, F outputs σm∗∗ on the message m∗∗. If it is a valid

forgery aggregate signature, then

Fc∗∗Agg ← H

(((
A.Z∗Agg − c∗Aggt

∗
IDAgg

2

)
||m∗∗

)1
)

(5)

and checks if c∗∗Agg = c∗Agg holds or not. On the other hand,
the simulator returns “fail” if 1) σm∗∗ is not a valid forgery
and 2) c∗Agg = c∗l . If the individual signature σmi

on the mes-
sagemi is valid,Z∗i ∈ Rp,2ki−32 ×Rp,2ki−32 holds. Thus, c∗i ←
H(((

A.Z∗i−c∗it∗i
2 )||mi)

1) for all i ∈ {1, 2, . . . , qH}. The sim-

ulator C calculates c∗Agg ← H(((
AZ∗Agg−c∗Aggt

∗
IDAgg

2 )||m∗∗)1),
where H((Z∗1 , c

∗
1,m1) || · · · ||(Z∗n, c∗n,mn)) = m∗∗ and c∗i s

are simulated as in the H-query on the set {y∗1 , y∗2 , . . . , y∗qH}.
Let Ui = H((A.y∗i ||mi)) for i ∈ {1, 2, . . . , qH}. The sim-
ulator C takes the inputs as the Rign-LWE instance A,
random ∇ and F as a subroutine, and then outputs
{Z∗Agg, c

∗
Agg,m

∗∗, t∗IDAgg
, U1, U2, . . . , UqH}.

An algorithm, say D′ is now constructed, which has the
input the above defined simulator C and the Ring-LWE in-
stance A, which solves the Ring-LWE problem. The algorithm
D′ uses the generalized forking lemma as stated in [27] and
produces an output which becomes a solution of the Ring-
LWE instance. Algorithm D′ returns “fail” if the simulator
C’s output is (0,⊥). Let the output of the C be (Out1, Out2),
where Out1 = {Z∗Agg, c

∗
Agg, m

∗∗, t∗IDAgg
, U1, U2, . . . , UqH}

and Out2 = {Z ′Agg, c
′
Agg, m

∗∗, t′IDAgg
, U ′1, U

′
2, . . . , U

′
qH
}.

The following two outcomes are generated by the simula-
tor C using two random ∇1 and and ∇2, respectively, such
that ∇1 = (∂, y∗1 , y

∗
2 , · · · y∗t , y∗t+1, . . . , y

∗
qH

) and ∇2 = (∂,
y∗1 , y

∗
2 , . . . , y

∗
t , y

′
t+1, . . . , y

′
qH

). The algorithm D′ extracts
Z ′Agg and Z∗Agg from ∇1 and ∇2, respectively. Now, Z ′Agg =

Z∗Agg implies that (s∗∗IDAgg,1
, s∗∗IDAgg,2

).c∗Agg +2(y∗Agg,1,

y∗Agg,2) = (s∗∗IDAgg,1
, s∗∗IDAgg,2

).c′Agg +2(y′Agg,1, y′Agg,2).

This means that s∗∗IDAgg,1
.c∗Agg +2y∗Agg,1 = s∗∗IDAgg,1

.c′Agg

+2y′Agg,1. Thus, s∗∗IDAgg,1
.(c∗Agg − c′Agg) +2(y∗Agg,1 − y′Agg,1)

= 0, or, s∗∗IDAgg,2
.c∗Agg +2y∗Agg,2 = s∗∗IDAgg,2

.c′Agg +2y′Agg,2,

or, s∗∗IDAgg,2
.(c∗Agg −c′Agg) +2(y∗Agg,2 −y′Agg,2) = 0. Hence,

s∗∗IDAgg,1
= −2(y∗Agg,1 −y′Agg,1).(c

∗
Agg −c′Agg)

−1 and s∗∗IDAgg,2

= −2(y∗Agg,2 −y′Agg,2).(c
∗
Agg −c′Agg)

−1. As a result, if the ad-
versaryF can compute (y∗Agg,1 −y′Agg,1) and (y∗Agg,2 −y′Agg,2),
the adversary F will be to solve the Ring-LWE problem.

The simulator C can succeed in the game if it can guess the
index l correctly as well as the forgerF produces a valid forgery
aggregate signature. This means that the success probability of
the C turns out to be εF

qH
. Assume that the time taken by the

F to generate a valid forgery aggregate signature is denoted
by tF . It is worth to notice that the total running time of F
depends on its running time plus the time needed by the C for
responding the queries like hash and sign queries. Then, C’s
running time becomes t′F = tF+ tqH + tqS , where tqH and tqS
are respectively the time needed for hash and sign queries. With
the help of the generalized forking lemma as stated in [27], if
we take p > 8qH

εF
, the running time of the simulator C becomes

t′F .8q
2
H

εF . loge(
8qH
εF

)
with the success probability (advantage) of at least

εF
8qH

. Hence, the theorem follows. �

C. Informal Security Analysis

In the following we show that the proposed scheme is robust
against the following potential attacks needed in an IoT-enabled
drones environment.

1) Replay Attack: Suppose an adversary F intercepts the
“data collection message” MsgDRi

= {TXDRi
} during the

data collection phase stated in Section V-B that is sent from
a drone DRi to the corresponding GSSj via a public channel,
where TXDRi

= {mi, SSigmi
, pki},mi = {IDDRi

, IDAggj ,
(RTSstart, RTSend), DataDRi

, CTSDRi
} and SSigmi

=
((zi1, z

i
2), ci). Now, if F resends the same message to the re-

cipientGSSj after some time, theGSSj will check the validity
of the received timestamp CTSDRi

. If it does not hold, the
GSSj will discard the message and it will be treated as old
message. Thus, the timestamping mechanism helps in achieving
the protection against replay attack.

2) Man-in-the-Middle Attack: In this attack, the adversary
F will intercept the “data collection message” MsgDRi

=
{TXDRi

} during the data collection phase and try to modify
the message so that the recipient GSSj will not be aware of the
modified valid message. In order to do so,F can create a current
timestamp fCTSDRi

and fake data fDataDRi
to compute

mf
i = {IDDRi

, IDAggj , (RTSstart, RTSend), fDataDRi
,

fCTSDRi
}. However,F can not compute the signatureSSigfmi

on the modified messagemf
i on behalf of the droneDRi because

the secret key ski of DRi is unknown to F . Thus, F can not
send the modified message fMsgDRi

= {fTXDRi
}, where

TXDRi
= {mf

i , SSig
f
mi
, pki}. A similar scenario happens

when F will try to modify the “data aggregation message”
MsgAggj = {(TXDRi1

, TXDRi2
, . . . , TXDRitn

), ASigAggj ,
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pkAggj} to send to a cloud server, CSk, on behalf ofGGSj due
to generation of the aggregate signatureASigAggj . This restricts
F to launch the man-in-the-middle attack.

3) Impersonation Attacks: In this case, we consider two
types of impersonation attacks: a) “drone impersonation attack”
and b) “GSS impersonation attack”.
� In “drone impersonation attack,” we assume that the ad-

versary F wants to impersonate the GSSj on behalf of a
legal droneDRi. To do so,F can generate a current times-
tamp ICTSDRi

and fake impersonated data IDataDRi
to

compute mI
i = {IDDRi

, IDAggj , (RTSstart, RTSend),
IDataDRi

, ICTSDRi
}. However, F will stuck in com-

puting the signature SSigImi
on the messagemI

i on behalf
of the droneDRi because the secret key ski ofDRi is not
available to F . Thus, F can not create a valid message of
the type: MsgDRi

= {TXDRi
} and send it to the GSSj .

As a result, “drone impersonation attack” is not possible in
the proposed scheme.

� In “GSS impersonation attack,” suppose the adversary F
wants to impersonate a cloud server CSk on behalf of
its associated GSSj . For fulfilling this purpose, F needs
to create an impersonated “data aggregation message”
as MsgAggj = {(TXDRi1

, TXDRi2
, . . . , TXDRitn

),

ASigAggj , pkAggj}. For this purpose, F will have the
transactions (TXDRi1

, TXDRi2
, . . . , TXDRitn

) which
contain the individual signature created by the respective
drones DRi. However, to create a new aggregate signa-
ture, F needs to have the secret key skj = (s0

IDAggj
,1,

s0
IDAggj

,2). This restricts F to generate the impersonated

“data aggregation message” as MsgAggj on behalf of the
GSSj to send it the cloud server CSk. As a result, “GSS
impersonation attack” is also resisted in the proposed
scheme.

4) Physical Drone Capture Attack: According to the threat
model stated in Section II-B, a registered drone, say DRi, can
be physically captured by the adversary F . Using the “power
analysis attacks” [17], F can easily extract all the credentials
stored in its memory. Thus, the adversary F has the creden-
tials {IDDRi

, (ski, pki)}. Note that during the KeyGen phase
stated in Section IV-A all the drones are provided with the
distinct and unique identities and secret-public keys pairs. As
a result, F can only create valid “data collection message” on
behalf of the compromised DRi. However, F can not generate
any valid “data collection message” on behalf of the remaining
non-compromised drones in the network as their secret keys
are unknown to the adversary F . This shows that the proposed
scheme is “unconditionally secure against drone capture attack”.

5) Quantum Attacks: The hybrid lattice-reduction is con-
sidered as an attack where an adversary requires to solve the
“shortest vector problem (SVP)” which is explained as follows.
We are given a basis of vectors of a lattice where the vectors
are the fixed-length tuples of integers. We need to determine a
non-zero vector whose length is the shortest vector’s length.

Now, when the “hybrid lattice-reduction” and “meet-in-the
middle (MiTM)” attacks are combined together, a hybrid attack
is then formed. This attack is an important attack for evaluation

Fig. 4. Testbed setup.

of the security of many lattice-based cryptographic schemes,
such as NTRU (NTRUEncrypt and NTRUSign). In case of a
generic attack, it is refereed to an attack where a secret key is
needed to be recovered by the adversary based on generation of
the decryption errors which is a treated as a “chosen-ciphertext
attack (CCA)”.

In a quantum MiTM attack, the adversary blocks “all the
calibration signals and transmits the forged calibration signals
to disturb the activation timing calibration of the detectors”.
The proposed lattice-based aggregate signature scheme, uses
the lattice-based quantum keys along with the blockchain tech-
nology for IoT-enabled drones applications. This will helps to
achieve security against various attacks from both the classical
as well as quantum computers including the “hybrid lattice-
reduction,” “generic” and quantum MiTM attacks.

VII. TESTBED EXPERIMENTS AND RESULTS

In this section, we describe the testbed experiment that was
conducted to implement the proposed lattice-based aggregated
signature scheme (LBAS).

A. Experimental Setup

The setup of the testbed is given in Fig. 4. The setup consists
of a Raspberry Pi 3 Model B as a drone (IoT smart device),
an Ubuntu 20.04 laptop as both the KGC and aggregator, and
HP Chromebook laptop as a cloud server. We use the python
3.8.10 language to code the proposed LBAS. The conducted
experiment confirms the message signing and verification pro-
cess of our lattice based scheme for both a single message
and an aggregate message. For this purpose, we have coded
the KeyGen algorithm in Section IV-A, the LSSign signing
algorithm in Section IV-B, the LSV er verification algorithm
in Section IV-C, the LASign aggregate signing algorithm in
Section IV-D and the LAV er aggregate verification algorithm
in Section IV-E.

The real-world scenario is simulated by creating multiple
signers (users) on the Raspberry PI based IoT smart device
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TABLE II
SYSTEM PARAMETERS USED IN EXPERIMENTS

Fig. 5. Experimental results at the drone 1 (IoT device) side.

Fig. 6. Experimental results at the drone 2 (IoT device) side.

(drone), each sending messages to the aggregator. The private
and public keys for each of the signers is sent via a secure
channel, while the messages and signatures are transferred over
an open network. The time taken for each of the steps is measured
independently.

B. Experimental System Parameters

In Table II, we describe the parameters used in our testbed
experiments.

C. Results and Discussions

The messages sent by an IoT device considering as a drone
are verified correctly only if the signature sent is constructed
using the LSSign algorithm. Also, it is hard to find different
messages for which the same signature verified correctly. In
Fig. 5, we have shown how drone 1 (IoT device) has created the
lattice-based signature on a message with the message signing
time. Similarly, we have shown how another drone, drone 2 (IoT
device) has created the lattice-based signature on a message with
the message signing time, which is demonstrated in Fig. 6. Now,
in Fig. 7, we have shown the aggregator’s individual lattice-
based signature verification time for both the signed messages
received from drone 1 and drone 2, respectively. In addition,
we have shown the lattice-based aggregate signature generation
and verification time on the received individual signed messages
from the drones as well.

We have plotted the various experimental results in Fig. 8.
Fig. 8(a) shows a single message signature generation cost at
a drone (IoT device), whereas Fig. 8(b) tells a single message

Fig. 7. Experimental results at the aggregator (GSS) side.

signature verification cost at a drone (IoT device). It can be
observed from these figures that the time required for signing
and verification of single message varies linearly with the size of
messages to be signed. In Fig. 8(c), we have shown an aggregate
message signature generation cost at an aggregator node by
varying the number of messages to be aggregated, whereas
in Fig. 8(d) we have shown an aggregate message signature
verification cost at the aggregator side by varying the number of
messages to be aggregated. In can be also observed from both
the cases that when the number of messages is more to produce
the aggregate signature, its signing cost as well as verification
cost also increases linearly.

In Fig. 9(a), we have shown the histogram of times taken
by LSSign algorithm using 1000 random messages of size
5 KB. It can be observed from the plot that a major fraction of
messages take time between 200 to 220 milliseconds. Fig. 9(b)
is a similar histogram plot for the time taken by the LSV er
algorithm. It can be observed that the time taken lies between
60 to 70 milliseconds. Fig. 9(c) and (d) are the histogram plots
for LSSign and LSV er, respectively, using 20 KB messages.
Majority of the message signing time lies between 360 to 410
milliseconds, while majority verification time lies between 80 to
110 milliseconds. We can see that as the message size increases,
the variance of LSSign and LSV er times increases. However,
this variance is small as compared to the mean values, which
indicates a high reliability and robustness of our scheme.

VIII. BLOCKCHAIN SIMULATION AND RESULTS

The blockchain simulations are provided in this section. For
the simulation purpose, we have virtually created a “decentral-
ized Peer-to-Peer (P2P) distributed system,” where each peer or
node in the network is considered as a server. Here, the total
number of distributed servers is taken as 7, and the system
configuration is considered as: “Ubuntu 20.04.4 LTS, Intel Core
i5-4210 U CPU @ 1.70 GHz× 4, Memory 7.7 GiB, NVD7/Intel
HD Graphics 4400 (HSW GT2), OS type 64-bit, disk capacity
1.0 TB”.

The source code was implemented through the utilization of
node.js VS code 2019 [28]. Since the blockchain is a distributed
technology, adding a block into the chain requires a distributed
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Fig. 8. (a) Single message signature generation cost at drone (IoT device). (b) Single message signature verification cost at aggregator (GSS). (c) Aggregate
signature generation cost at aggregator (GSS). (d) Aggregate signature verification cost at aggregator (GSS).

Fig. 9. Histograms of (a) LSSign times for 5 KB message using 1000 messages. (b) LSVer times for 5 KB message. (c) LSSign times for 20 KB message.
(d) LSVer times for 20 KB message.

Fig. 10. Blockchain simulation outcomes for (a) Case 1. (b) Case 2. (c) Case 3.

consensus mechanism. Hence, we have utilized a voting based
PBFT consensus algorithm for the block mining purpose as
mentioned in Section V-D. The entire blockchain simulation
is performed under the following three cases:
� Case 1: In this context, each block is having a number

of transactions which is equal to 19, and the generated
blockchain comprises of a variable number of the blocks,
that is, varying blockchain sizes. The simulation results
shown in Fig. 10(a) indicate the computing time (in sec-
onds), which demonstrates that the overall time for gener-
ating a blockchain with different blocks for a fixed number
of transactions present in each block. Note that we have
considered the synthetic data (transactions) containing in
the blocks to validate the blockchain time. It has been found
that as the number of blocks are increased for mining in
the blockchain, the computing time also grows slowly.

� Case 2: In this case study, the considered blockchain
has a fixed number of blocks, which is 23, where each
block can carry a varying number of transactions. The
simulation results displayed in Fig. 10(b) demonstrate that

the computing time (the amount of time needed to build
a full blockchain) increases slowly when the number of
transactions considered in each block also increases.

� Case 3: In this scenario, we consider the number of nodes
in the P2P network to be variable between 5 and 25,
whereas the number of blocks in a chain or the blockchain
size is constant across all the simulations. The number of
transactions in a block is limited to 30, and the blockchain is
also limited to 25 in size. Fig. 10(c) depicts the simulation
results. According to the findings, when the number of
nodes in the P2P network grows, the total computational
time (in seconds) also increases.

IX. RELATED WORK AND COMPARATIVE STUDY

In this section, we first discuss the relevant existing basic
schemes proposed in the literature. We also discuss other existing
approaches that are applicable for IoT and “Internet of Drones
(IoD)” applications. Next, we provide a detailed comparative
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study among our proposed scheme and existing state of art
schemes.

A. Existing Basic Schemes

Ma and Jiang [29] proposed a practical “lattice-based mul-
tisignature scheme using the blockchain technology” which is
based a condition that the signature size is small. After that, they
extended their proposed scheme to support the public key aggre-
gation in the setting of a small signer group. In their proposed
scheme, all the signers agree on selecting a random polynomial,
each signer generates their own private and public keys pair by
executing the key generation algorithm. Each signer runs the
multisignature generation algorithm in order to generate their
signature. One of the signers, called the designed combiner, who
is responsible for collection of all the signatures from the signers
and then computes the multisignature on the collected signa-
tures. The verifier runs the multisignature verification algorithm
for verifying the candidate multisignature. Their scheme can be
also extended to support the public key aggregation through the
technique described in [30], where the security of their scheme
is based on the lattice-based Ring-SIS hard assumption.

Lu et al. [4] designed a “lattice-based unordered aggregate
signature scheme based on the intersection method”. In their
approach, the unordered aggregate problem of lattice signatures
with different public keys has been targeted to solve. A trusted
authority, known as theKGC, who runs the setup algorithm and
generates the relevant public parameters. After that, the KGC
needs to execute the “key extract algorithm” for generating the
public key for verification purpose, and also the secret key for
each signer for signing the messages. Next, each signer needs
to execute the “sign algorithm” to produce a single signature
on the intended message, and the aggregator then executes the
“verification algorithm” for checking all the individual signa-
tures. Once the individual signatures are valid, the “aggregate
algorithm” is executed by the aggregator for producing the
aggregate signature. Finally, the aggregate signature needs to be
verified by the verifier. The security of this scheme is dependent
on the lattice-based “small integer solution (SIS) problem”.

Shim [3] proposed an “identity-based aggregate signature
(IBAS)” scheme with constant pairing computations. However,
their scheme does not achieve the compactness property. The
security of their scheme relies on the hardness of number
theoretic “computational Diffie-Hellman (CDH) assumption”.
Bansarkhani et al. [33] proposed a “lattice-based sequential
aggregate signature scheme” which was shown to be secure
in the “random oracle model”. They introduced the concept of
“preimage sampleable trapdoor functions” and provided a sketch
of the signature scheme.

Zhang et al. [31] proposed an efficient “homomorphic ag-
gregate signature scheme (HASS) based on lattice”. They used
the idea of the “lattice-based linearly homomorphic signature
scheme over a binary field in the single-user case,” and then
developed it into a “lattice-based HASS for the multiuser case”.
They proved that the security of their schemes can be achieved
by reduction to the single-user case where the “signature length
remains invariant”.

Li et al. [32] designed a “quantum secure and non-interactive
identity-based aggregate signature scheme” from the lattices. In
their approach, any verifier only requires to calculate a “sim-
ple polynomial multiplication” in order to check the aggregate
signature validity, because the aggregate signature size in their
scheme becomes a “logarithmic function of signatures being
aggregated”.

Hwang and Lee [37] suggested a lightweight signature
scheme which applies a “certificate-based aggregate signature”.
Their scheme is able to generate and verify the signed messages
from the deployed IoT smart devices in an IoT-based cloud
environment. Their scheme supports the key insulation property
when the secret keys can be exposed due to physical attacks, like
side channels attacks.

B. Existing Schemes for IoT and IoD Applications

Qian et al. [36] proposed a “lattice-based data aggregation
scheme in residential networks” for IoT-enabled smart grid
environment. They proposed a new “homomorphic aggregated
signature based on batch RSA public key cryptosystem”. They
also designed a new “data aggregation scheme for the smart
grid” which requires the “shorter public key” and “stronger data
integrity” with respect to the traditional schemes. In addition,
they utilized the “directed spanning tree based on an undirected
complete graph” in order to assure the security of data aggre-
gation structure at the base station. In their approach, the “data
aggregation structure” helps in resisting attacks against outside
adversaries.

Khan et al. [9] suggested a “certificate-based aggregate sig-
nature (CBS-AS) scheme based on hyperelliptic curve cryptog-
raphy” in an Internet of Drones (IoD) environment. In their
approach, a drone, acting as an aggregator, in a cluster can
aggregate the “individual signatures of its member drones” and
then verify the aggregated data. Since the drones are usually
resource limited, the data aggregation by an aggregator drone
may pose a limitation in this scheme.

Lu et al. [34] applied the “intersection method from lattice” in
order to design a generic approach for the batch signature in an
IoT network. They combined their generic approach with the
“hash-and-sign paradigm” and “Fiat–Shamir transformation”
for designing the batch signature methods for an IoT-based
“wireless body sensor network”. It was shown that their scheme
is secure under the “existential unforgeability against adaptive
chosen message attacks” based on the hard lattice-based prob-
lem, known as “small integer solution (SIS)” problem.

Jan and Khan [35] designed two security frameworks. The
first one is on the identity-based authentication scheme, whereas
the second one is an “aggregate signature-based authentication
scheme” in IoD networks. However, their schemes are computa-
tionally heavy due to expensive operations like bilinear pairings.

Another “certificateless aggregate arbitrated signature” mech-
anism for an IoT environment was suggested by Lee et al. [38].
In their proposal, the IoT devices being the signers generate
the signatures on the sensing information (messages) and the
messages-cum-signatures are aggregated by the gateway node,
and these are then stored at the cloud storage. A consumer being a
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TABLE III
COMPARISON OF THE PROPOSED LBAS WITH BASIC LATTICE-BASED AGGREGATE SIGNATURE SCHEMES

TABLE IV
PERFORMANCE COMPARISON WITH RELATED SCHEMES FOR IOT/IOD APPLICATIONS

verifier can retrieve the data and test its authenticity by verifying
the signature attached in the requested message. In their scheme,
the aggregate signature is generated on received messages and
signatures from the deployed IoT devices. Next, the arbitrated
signature of the aggregator is aggregated in “aggregate signature
of IoT devices”.

An aggregate signature mechanism is proposed by Gu
et al. [39]. Their scheme relies on a “linearly homomorphic
signature for electronic healthcare systems (EHS) in an IoT-
based helathcare system”. It supports both the aggregation and
linear homomorphism properties, and also uses the double data
compression. Thumbur et al. [40] also suggested a “certificate-
less aggregate signature-based authentication scheme” for an
IoT-enabled vehicular ad hoc network (VANET) environment.
Since their scheme is not based on the expensive pairing oper-
ations, the computational efficiency of their proposed system is
improved.

C. Comparative Study

We now explain a comparison study among our proposed
scheme (LBAS) and other existing basic lattice-based aggregate
signature schemes, namely the schemes of Zhang et al. [31], Lu
et al. [4], Li et al. [32], and Bansarkhani and Buchmann [33].
Table III shows that the public key size of our scheme is less
than the public key size of the schemes [4], [31]. Similarly, the
size of the private key in our scheme is also small with respect
to that for the schemes [4], [31], [32]. On the other hand, our
scheme requires small individual signature size as well as aggre-
gate signature size with respect to all other schemes. Note that
ψ ≥ 5λlog2 p is an integer, f is defining as a power of 2 where
f is the highest power of an irreducible polynomial, p is a large
prime, n is the total number of signers, λ is a security parameter,
ki andkIDAgg

are the positive integers less than
√
p, respectively,

and s is the “Gaussian parameter”. Since the proposed scheme
relies on the hardness of the lattice-based “Ring-LWE” problem,
it resists various quantum attacks as explained in Section VI-C5.

In Table IV, we have also compared the proposed LBAS with
the existing related schemes for IoT/IoD applications, like the
schemes of Khan et al. [9], Lu et al. [34], Jan and Khan [35], and
Qian et al. [36]. It is noted that the proposed LBAS only supports
decntralized architecture as it is based on the blockchain technol-
ogy, whereas other schemes are centralized in nature. Moreover,
the proposed LBAS is very efficient and also provide high-level
security including the various quantum attacks (explained in
Section VI-C5) as compared to the schemes [9], [35], [36].

X. CONCLUSION

In this article, we designed a lattice-based aggregate signa-
ture scheme whose security is based on the hardness of the
lattice-based Ring-LWE problem. We then applied the designed
lattice-based aggregate signature scheme for the real-time IoD
applications, where the IoT-enabled drones play the role of
individual signers and the GSS plays the role of an aggregator.
Next, the aggregate message with its aggregate signature is
verified by a cloud server in the P2P cloud servers network and
the blocks containing the verified transactions are formed by the
cloud server for mining purpose and the created blocks are then
added into the blockchain network for proving immutability,
decentralization and transparency purposes. The conducted for-
mal and informal security analysis exhibited the strong security
of the proposed scheme against a variety of attacks including
quantum attacks. A real test-bed experiment was conducted
to measure various computational time needed for individual
signature generation and verification, and aggregate signature
generation and verification by the respective individual signer
being an IoT device (acting as a drone), the GSS and the
cloud server, respectively. A blockchain based simulation was
carried out to show the effect on computational time. Finally,
a comparative analysis of the proposed scheme shows superior
security and efficiency as compared to those for other competing
relevant schemes.
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In future, we would like to fine-tune the proposed scheme to
convert it into a more lightweight scheme. It will be helpful in
reducing the computational costs for signing and verifying the
lattice-based aggregate signatures. Since the aggregate signa-
tures are used inside the blocks which are mined and added into
the blockchain via a consensus process, so the more lightweight
aggregate signature generation and verification will help in
reducing the blocks verification and addition time during the
mining process too.
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