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Abstract

Certain self-supervised approaches to train image encoders, like CLIP [13], align
images with their text captions. However, these approaches do not have an a priori
incentive to learn to associate text inside the image with the semantics of the text.
Our work studies the semantics of text rendered in images. We show evidence
suggesting that the image representations of CLIP have a subspace for textual
semantics that abstracts away fonts. Furthermore, we show that the rendered
text representations from the image encoder only slightly lag behind the text
representations with respect to preserving semantic relationships.

1 Introduction

Image Representations Self-supervised approaches have had remarkable success in textual tasks
[11]. To harness the power of large-scale image data for dense image representations, [13] proposes a
self supervised learning task that aligns images with textual descriptions of the image. Once trained,
the image encoder has been shown to easily adapt to downstream image tasks.

Processing text in image Processing text as an image mirrors nature; most humans consume text
visually. Characterising how vision-language models process textual artifacts inside images is of great
importance – for example, in the setting of sign boards for self driving cars. Processing rendered text
has some relevance in the discussion of tokenization as well with [14, 16] discussing the bottlenecks
current tokenization methods for language models for multi-lingual support and generalization.

However, it is not obvious that the semantics of an image should correspond to that of the text inside
the image – the image of a large building with the sign board that says “Caesar’s” corresponds to
a hotel and not a historical figure. Especially in the context of the CLIP training task, the captions
would typically be about the object that is in the image and not the text in the image. Nevertheless,
preliminary evidences have been provided to show that the CLIP image encoders process text in
some form with [10] experimentally demonstrating that CLIP’s image representations can be used to
match text inside an image with images of what the text describes. In contrast, our work studies the
textual semantics of rendered text in the absence of a corresponding image. We deal with tasks like
sentiment classification – for which no clear image grounding exists.

Contributions We hypothesize that the Image encoder in CLIP captures the textual semantics of
text rendered in images. Furthermore, we pose that the semantic representation is robust to strictly
visual attributes like font. More specifically, our contributions are

∗Equal Contribution
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Figure 1: We train a linear probe per font and evaluate on every font. The task, sentiment classification,
is purely linguistic and ideally is agnostic to the font used to render the text

• Using affine probes (see 2.1 for details) we provide evidence that decision boundaries can
be drawn on image representations to classify sentiment. Furthermore, these boundaries
generalize across the different fonts used to render the text.

• We provide evidence that rendered text representations from the CLIP image encoder is
almost on par with the representations from its text encoder. As detailed in 2.2, we use
second-order similarity alignment [8] with the representations from a pure Language Model
Llama 3 [3] as a proxy for general expressiveness. Our methodology here derives inspiration
from [6] and [7].

2 Experiments

Encoding text using the image encoder To obtain representations of text from the CLIP image
encoder, we render text into an image using [2]. We investigate textual semantics by checking for
invariance to visual artifacts like fonts, and thus we render each text sample using multiple fonts. We
use the pooled output of the CLIP image encoder as the ‘representation’ for the text.

2.1 Image Representations Affinely Encode Sentiment

We hypothesize that there exists a text-semantic subspace in the representation space of the image
encoder. Following the linear representation hypothesis (LRH) [12], this implies that we can draw an
affine decision boundary to classify linguistic attributes like sentiment. Furthermore, if there is a true
text-semantic subspace in the image representations, then these decision boundaries should be robust
to purely “visual” artifacts like fonts. Given a dataset D = {(ti, yi)}Ni=1 where the ti is the text and
yi is the classification target, let hf

i be the image embedding of ti when rendered using font f . We
then define an affine probe

yi ∼ softmax(Whf
i + b).

We train one probe per font (see 1) on two established semantic classification datasets, SST2 [4]
and MR [1]. Each probe is evaluated with a held out test set rendered using every font i.e. each
probe is tested on every font; this tells us whether the learnt decision boundary is purely semantic
and therefore agnostic to font. Furthermore, to provide a reasonable baseline, we construct a control
task in line with [5] specified in 3.1.

2.2 Measuring Textual Semantics in Image Encodings

We formalize our study of the semantics encoded in the rendered image encoding independent of a
particular task. We operationalize our measure of a notion of general semantics by using a second
order isomorphism comparison with a fully pretrained Language Model Llama 3 [3]. The rationale
for comparing these representations against LLama is that text-only models of its class offer the best
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performance when it comes to capturing the semantics of text. For the actual comparison, we use the
well known measure Central Kernel Alignment CKA [8] with a linear kernel.

Restating the linear CKA metric, for matrices of n embeddings to be compared after centering
X,Y ∈ Rn×d

CKA(X,Y ) =
vec(XXT ) · vec(Y Y T )

||XTX||2F ||Y TY ||2F

Assuming that there are two sets of embeddings over the same set of samples, the CKA metric
constructs a similarity matrix of each embedding with every other embedding in the set and then
the similarity matrices of the two sets are compared. This intra-similarity measure allows us to
compare embeddings from different kinds of models. Since this similarity number is arbitrary we
contextualize the numbers obtained from the rendered text embedding by recognizing that they should
be upper-bounded by the CKA score of the CLIP text encoder against Llama; we use the last hidden
state from Llama as a sentence representation and the pooler embedding for the CLIP text encoder.
Additionally for the lower bound, we use the controls as stated in 3. For this experiment, we use 1000
samples from the captions in the MS-COCO [9] dataset for the sentences. **

3 Controls

3.1 ROT-k

To root out the possibility of performance being obtained due to consistent character associations.
We introduce a control that encrypts each sentence using the ROT-k cipher i.e. we substitute each
letter with a letter k = 9 places later in the English Alphabet. The purpose of this control is to strip
all the text of all semantics while preserving consistent character and keyword level patterns. This
cipher provides a consistent mapping such that the transformed sentences are still self-consistent, i.e.
if it possible to do the task by using token or character associations alone – it should be possible even
after the cipher has been applied. This control therefore checks whether our tasks and results can
be short-circuited by using character associations alone – if we are unable to train a probe as in 2.1
on top of these transformed input’s representations then that implies that the task relies on actual
semantics to be solved.

3.2 Jumble

To mitigate against inherent model bias to how characters look like, we introduce a control by
randomizing the character sequence, including spaces before rendering the text. This produces an
incomprehensible character sequence. This manipulation ensures that any meaningful semantic
information is stripped. The model’s performance should approximate random accuracy in this setting
which validates the control. This control is run for all of our experiments.

4 Results

We run most of our experiments on two CLIP-based models OpenClip [13] and LAION-CLIP which
is a CLIP based model trained on the LAION 5B dataset [15]. Our results are consistent across both
the models. In 2 we see that the f1 scores by our sentiment probes are well above chance.

Furthermore, we observe that probes trained only on one font generalize directly to test sets of other
fonts – providing us with the evidence for a semantic subspace that abstracts away the visual details
of fonts. These fonts vary drastically in terms of visual style, Cedarville is handwritten, Source
Code Pro is monospace, and Kenia is decorative with distinct gaps and curves. Results for all fonts
are in the appendix A.1. In contrast, we see that the performance for the controls are consistently
low – they are near 0.6 when tested on the same font and have no cross-font generalization (with
the f1 being very close to random chance 0.5.) This gives us further confidence in the requirement
of semantics to do well on the experimental setup of 2.1. We report results from the experiment in
section 2.2 in Table 1 and we see that the CKA numbers of the image encoder only slightly lag behind
that of the CLIP text encoder for most fonts (they are very close for popular fonts like Times New
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Figure 2: We report the f1-scores for binary classification. Each row represents the font on which
the probe was trained and the column represents the test setting. We evalute them on two sentiment
datasets SST-2 [4] and MR [1]

Roman). Note that Text-GT values are constant across fonts because there is no rendering involved.
Moreover, the CKA numbers for the embeddings from the control settings are significantly worse
than the meaningful font settings. These results provide evidence to the fact that the image encoder
has non-trivial semantics encoded. Note that in both the cases, the controls Jumble and ROT-k are
rendered in Roboto; we chose the font because it performs the best.

5 Conclusion

We conclude that the Contrastive Image-Language Pretraining over large parallel corpora leads to
some textual semantics beinging capture by the image representations. This is supported by the fact
that there is a semantic subspace in the image representations of rendered that is mostly agnostic to
the font the text is rendered in. The control tests further provides us with an indication that rendered
text is being encoded semantically and not via character associations. We believe this work should
serve as motivation to studying the training or task circumstances that lead to the emergence of textual
semantics in image encoders and perhaps better world understanding.
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Table 1: CKA Scores comparing the alignment between image representations of rendered-text
(Image), text representations from the CLIP text encoder (Text) and the ground truth (GT) — LLama
text representations on 1000 samples from MSCOCO [9].

Experiment OpenClip LAION-CLIP

Image-GT Text-GT Image-Text Image-GT Text-GT Image-Text

Jumble 0.04 0.03 0.10 0.06 0.06 0.38
ROT13 0.07 0.10 0.17 0.06 0.17 0.35
ROT9 0.05 0.11 0.13 0.07 0.19 0.34
Roboto 0.19 0.23 0.54 0.21 0.26 0.72
Source 0.19 0.23 0.59 0.19 0.26 0.66
Times New Roman 0.24 0.23 0.67 0.21 0.26 0.72
Tiny5 0.24 0.23 0.61 0.20 0.26 0.65
Just Another Hand 0.16 0.23 0.41 0.16 0.26 0.51
Pacifico 0.24 0.23 0.67 0.21 0.26 0.72
Cedarville 0.18 0.23 0.52 0.18 0.26 0.63
Grey Qo 0.13 0.23 0.34 0.14 0.26 0.42
Dancing Script 0.22 0.23 0.65 0.20 0.26 0.69
Shadows into Light 0.23 0.23 0.66 0.20 0.26 0.70
Playwright Peru 0.21 0.23 0.62 0.19 0.26 0.68
Kenia 0.27 0.23 0.67 0.23 0.26 0.71

References
[1] Matty M. Chen. Mr dataset, 2024. URL https://huggingface.co/datasets/

mattymchen/mr.

[2] Alex Clark. Pillow (pil fork) documentation, 2015. URL https://buildmedia.
readthedocs.org/media/pdf/pillow/latest/pillow.pdf.

[3] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[4] Stanford NLP Group. Sst-2 dataset, 2024. URL https://huggingface.co/datasets/
stanfordnlp/sst2.

[5] John Hewitt and Percy Liang. Designing and interpreting probes with control tasks. In
Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP),
pages 2733–2743, 2019.

[6] Minyoung Huh, Brian Cheung, Tongzhou Wang, and Phillip Isola. The platonic representation
hypothesis. arXiv preprint arXiv:2405.07987, 2024.

[7] Reda Igbaria and Yonatan Belinkov. Learning from others: Similarity-based regularization for
mitigating dataset bias. In Proceedings of the 9th Workshop on Representation Learning for
NLP (RepL4NLP-2024), pages 37–50, 2024.

[8] Simon Kornblith, Mohammad Norouzi, Honglak Lee, and Geoffrey Hinton. Similarity of neural
network representations revisited. In International conference on machine learning, pages
3519–3529. PMLR, 2019.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr
Dollár, and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer
Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014,
Proceedings, Part V 13, pages 740–755. Springer, 2014.

[10] Joanna Materzynska, Xinchao Wei, Pushmeet Kohli, and Zeynep Akata Wang. Disentangling
visual and written concepts in CLIP. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 16427–16437, 2022.

5

https://huggingface.co/datasets/mattymchen/mr
https://huggingface.co/datasets/mattymchen/mr
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://buildmedia.readthedocs.org/media/pdf/pillow/latest/pillow.pdf
https://huggingface.co/datasets/stanfordnlp/sst2
https://huggingface.co/datasets/stanfordnlp/sst2


[11] Tomas Mikolov. Efficient estimation of word representations in vector space. arXiv preprint
arXiv:1301.3781, 2013.

[12] Tomáš Mikolov, Wen-tau Yih, and Geoffrey Zweig. Linguistic regularities in continuous space
word representations. In Proceedings of the 2013 conference of the north american chapter of
the association for computational linguistics: Human language technologies, pages 746–751,
2013.

[13] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang, editors, Proceedings of the 38th International Conference on Machine
Learning, volume 139 of Proceedings of Machine Learning Research, pages 8748–8763. PMLR,
18–24 Jul 2021. URL https://proceedings.mlr.press/v139/radford21a.html.

[14] Phillip Rust, Jonas F Lotz, Emanuele Bugliarello, Elizabeth Salesky, Miryam de Lhoneux, and
Desmond Elliott. Language modelling with pixels. In The Eleventh International Conference
on Learning Representations, 2022.

[15] Christoph Schuhmann, Romain Beaumont, Richard Vencu, Cade W Gordon, Ross Wightman,
Mehdi Cherti, Theo Coombes, Aarush Katta, Clayton Mullis, Mitchell Wortsman, Patrick
Schramowski, Srivatsa R Kundurthy, Katherine Crowson, Ludwig Schmidt, Robert Kacz-
marczyk, and Jenia Jitsev. LAION-5b: An open large-scale dataset for training next gen-
eration image-text models. In Thirty-sixth Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2022. URL https://openreview.net/forum?
id=M3Y74vmsMcY.

[16] Michael Tschannen, Basil Mustafa, and Neil Houlsby. Clippo: Image-and-language understand-
ing from pixels only. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 11006–11017, June 2023.

A Appendix

A.1 Trained-on-Tested-on Plots

Results for all fonts in the sentiment experiment is present here.
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Figure 3: LAION-CLIP on MR
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Figure 4: LAION-CLIP on SST2
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Figure 5: OpenClip on MR
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Figure 6: OpenClip on SST2
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