
LLMs for Generation of Architectural Components:
An Exploratory Empirical Study in the Serverless

World
Shrikara Arun*

IIIT Hyderabad, India
shrikara.a@students.iiit.ac.in

Meghana Tedla*
IIIT Hyderabad, India

meghana.tedla@students.iiit.ac.in

Karthik Vaidhyanathan
IIIT Hyderabad, India

karthik.vaidhyanathan@iiit.ac.in

Abstract—Recently, the exponential growth in capability and
pervasiveness of Large Language Models (LLMs) has led to
significant work done in the field of code generation. However,
this generation has been limited to code snippets. Going one step
further, our desideratum is to automatically generate architec-
tural components. This would not only speed up development
time, but would also enable us to eventually completely skip
the development phase, moving directly from design decisions to
deployment. To this end, we conduct an exploratory study on
the capability of LLMs to generate architectural components for
Functions as a Service (FaaS), commonly known as serverless
functions. The small size of their architectural components make
this architectural style amenable for generation using current
LLMs compared to other styles like monoliths and microservices.
We perform the study by systematically selecting open source
serverless repositories, masking a serverless function and utilizing
state of the art LLMs provided with varying levels of context
information about the overall system to generate the masked
function. We evaluate correctness through existing tests present
in the repositories and use metrics from the Software Engineering
(SE) and Natural Language Processing (NLP) domains to evalu-
ate code quality and the degree of similarity between human and
LLM generated code respectively. Along with our findings, we
also present a discussion on the path forward for using GenAI
in architectural component generation.

Index Terms—Architectural Component Generation, LLM,
Serverless.

I. INTRODUCTION

Ever since the inception of the field of Software Architec-
ture (SA) [1], one of the goals has been to automate/semi-
automate the generation of executable systems from architec-
ture descriptions as this would increase compliance, promote
traceability, etc. Over the years the SA community has been
working towards realizing this goal through defining Archi-
tecture Description Languages (ADLs) and Domain Specific
Languages (DSLs) [2]–[4] and further developing approaches
for code generations using model transformations. However,
their application to practice has been limited due to the
steep learning curve, lack of extensibility, support for tooling,
etc [3]. On the other hand, with recent advancements in AI,
Large Language Models (LLMs) are moving us ever closer
to a world of increased automation, with applications across
multiple Software Engineering (SE) tasks, as described by Hou
et al. [5]. They have been used for software development,

*These authors contributed equally.

maintenance, requirements engineering, and more, with code
generation and program repair being the most common ap-
plications [5]. There have also been several commercial tools
such as ChatGPT, GitHub Copilot, and Cursor. However, this
code generation has been in the context of generating low level
code snippets, with the generation of software architecture
components using LLMs being an unexplored space.

To this end, we conduct an exploratory empirical study on
the capability of LLMs to generate architectural components
in the context of Functions-as-a-Service (FaaS), commonly
referred to as serverless functions. FaaS supports event-driven
architectural style and enables easy development due to the
abstractions provided by the cloud provider, who manages
the infrastructure for running the basic units of FaaS, called
serverless functions. We choose serverless functions primarily
due to the small size of their architectural component, as
opposed to microservices or monoliths, where a single com-
ponent may consist of thousands or even millions of lines
of code. We believe that this can provide a first step when
evaluating the architectural component generation capabilities
of LLMs. We emphasize that the architectural components we
deal with in our study are serverless functions, and we refer
to the architectural component of FaaS as serverless functions
in the remainder of this paper. As part of our study, we utilize
3 kinds of prompts containing information at different levels
of abstraction, systematically select 4 open-source serverless
repositories and 5 code-generation LLMs, generating a total
of 145 serverless functions that we evaluate for functionality
and code quality both with and without human intervention.
The code and data for our study is available publicly. 1

The remainder of this paper is structured as follows: Section II
provides background information about Serverless Functions,
LLMs and some prompting methods. Section III describes
related work. Section IV describes our research questions and
the design of our study. Section V presents results, which are
discussed in Section VI along with a look into a possible
future for GenAI for Software Architecture and discusses the
threats to validity of our study. Finally, Section VII presents
our conclusion and future work.

1https://doi.org/10.5281/zenodo.14539782

https://orcid.org/0009-0005-8543-6130
https://orcid.org/0009-0000-8540-8790
https://orcid.org/0000-0003-2317-6175
https://doi.org/10.5281/zenodo.14539782


II. BACKGROUND

This section provides an overview of the concepts dealt
with in this study, including serverless functions, LLMs for
general use and for code generation and methods to improve
performance of an LLM on a task.
A. Function-as-a-Service (FaaS) (Serverless Functions)

Function-as-a-Service (FaaS) is one of the most popular
forms of the cloud computing paradigm called serverless
computing [6]. It is widely adopted across domains due to its
nature of being ephemeral, event driven, and elastic. Unlike
traditional cloud computing paradigms, in FaaS, developers
only write business logic in the form of fine-grained functions,
which are deployed onto a cloud platform, where the cloud
provider handles the hassle of managing and maintaining in-
frastructure, execution environment, which is abstracted away
from the developer. FaaS functions are event driven as they
only run when triggered by an event, such as a HTTP request,
an update in a database, or a message arriving on a message
queue. They are ephemeral since they only run for a short
amount of time, after which they are descheduled by the
cloud provider. They are also elastic, since they can scale
automatically based on load. This also leads to potential cost
savings by charging only for the time functions run. These
properties and the multitude of languages supported makes
FaaS applications quite easy to develop. Through slight abuse
of notation, we refer to serverless functions and functions
interchangeably in the remainder of this paper.

B. Large Language Models and Code Generation

Large Language Models (LLMs) are probabilistic machine
learning models built on the Transformer architecture [7] that
can mimic human language use. They are composed of billions
of parameters and are trained on substantial content sourced
from the internet. Though they can be trained on and used for
other tasks, paradigmatic LLMs are generative auto-regressive
models, meaning that they sequentially generate the next token
in a sequence of tokens. Tokens are the units into which text is
broken down when processed and generated by LLMs. They
may correspond to an entire word or to a part of a word [8].
The maximum number of tokens that an LLM can process
is called its context length or context window, and this limits
the amount of information that can be provided in the input
prompt by the user.

The coding ability of LLMs was improved by the creation
of datasets like HumanEval [9] and Mostly Basic Python
Problems (MBPP) [10] on which LLMs have been fine-tuned.
Fine-tuning involves adapting a pre-trained model to perform
better on a specific task.

C. Zero-Shot Prompting and Few-Shot Prompting

Unlike fine-tuning, zero-shot and few-shot prompting do
not require a dataset to fine-tune on. Zero-shot prompting
involves directly making a model perform a task without exam-
ples, whereas few-shot prompting provides some examples in
context. Few-shot prompting is also referred to as in-context
learning, as it improves the performance of the model on a

task without requiring updates to the model’s parameters [11].
This significantly improves model performance on the task,
especially for larger models, as shown by [12]. In this work, an
instance of zero-shot prompting is to simply provide context
(the content of which is discussed in IV-C6) and request a
serverless function to be generated. For few-shot prompts,
we additionally provide some serverless functions from the
repository along with their description to the LLM and ask
for the function corresponding to a description whose code is
not specified.

III. RELATED WORK

Over the years, a lot of promising work has been done in
specifying software architecture using Architecture Descrip-
tion Languages (ADL) and further supporting the analysis and
code generation of components using model transformations
[3], [13]. In particular, an approach for the generation of
source code in the Go programming language from π-ADL
was proposed by Cavalcante et al. [14]. Further, an ADL
for architecture modeling, code generation, and simulation
of Cyber-Physical- Systems was proposed by Sharaf et al.
[15], [16]. Bardaro et al. in their recent work [4] make use
of AADL for modeling and further code generation in the
robotics domain. However, to the best of our knowledge, not
much work has been done in the serverless domain. Vladislav
Tankov et al. [17] proposes Kotless which aims to simplify
serverless development through the use of a DSL and a plugin
to generate deployment code. However, the developer must
still develop the application logic and code. There have been
some works in using DSLs for supporting the specification and
generation of microservices. Rademacher et al [18] propose
an extensible approach to generate adaptable microservice
code and deployment specifications from models developed
using the modeling language, LEMMA. Further, Suljkanović
et al. [19] proposed Silveria, a DSL that allows users to
model the architecture of microservice-based systems and
further generate executable code using model transformations.
However as pointed out by Malavolta et al. [3], ADLs in
general have a higher learning curve which often hinders
practical adoption.

Significant work has been done on using LLMs for code
generation, including [20]–[24]. There also exist several tools
such as GitHub Copilot and the Cursor IDE. However, these
focus on the generation of code snippets, such as classes or
methods, and not at an architectural component level.

While Eskandani et al. [25] describe the application design
of serverless systems using GenAI as an open research di-
rection, it is through the lens of selecting an optimal pattern
based on requirements. We seek to evaluate the capability
of LLMs in generating architectural components by choosing
serverless as the architectural style. To this end, we also
conduct evaluations on the functionality, code quality, and
similarity between human-written and generated code.



IV. STUDY DESIGN
A. Goal

This study aims to evaluate the degree to which LLMs are
able to generate software architecture components. The degree
here refers to both the functional correctness and quality of
code. Using the Goal-Question-Metric approach described in
[26], we formalize our goal to:
analyze the effectiveness of LLMs for the purpose of
generating software architecture components with respect to
automatic software architectural component generation from
the viewpoint of software architects and developers in the
context of the Function-as-a-Service (FaaS) architectural style

B. Research Questions

RQ1: Can LLMs generate functional serverless functions?
• RQ1.1: Can LLMs generate functional serverless func-

tions without human intervention?
• RQ1.2: Can LLMs generate functional serverless func-

tions with minimal human intervention?
In this RQ, we aim to evaluate whether the architectural
components generated by LLMs are usable, to the extent that
they satisfy tests defined in their containing repositories. To
this end, we measure the outcome both when we directly use
the generated serverless function, and after fixing minor errors
described in Table III.

RQ2: How does the code quality of LLM-written serverless
functions compare to human-written code?
In this RQ, we move beyond functionality to evaluate the code
quality of the architectural component generated by the LLM.
We are also interested in measuring how similar generated
serverless functions are to their human written counterparts.

C. Experiment Workflow

In this subsection, we first explain Function Masking, an
adaptation of Masked Language Modeling from [27], which
we use to generate architectural components. Then, we de-
scribe each stage of the workflow shown in Figure 1.

1) Function Masking: BERT [27] was trained on the
Masked Language Modeling (MLM) task, where tokens were
randomly masked from the input, with the objective to predict
the masked token based on its context (both to the left
and right). This task is useful and allows for self-supervised
learning [28]. For example, in the sentence ”The tall boy
goes to the market”, if ”boy” is chosen to be masked, the
model sees the input ”The tall [MASK] goes to the market”,
where ”[MASK]” is the special mask token, and must output
”boy”. We extend this concept to the serverless world through
Function Masking. Given a serverless repository with multiple
serverless functions, we mask one function and use the LLM
to recreate the masked function, using different types and
amounts of context, as explained in IV-C5.

2) LLM Selection: An extensive number of LLMs are
available for use, and we select some for our study using
leaderboards published in literature. We require two LLMs,
one which will be used for summarizing the existing codebase,

as described in IV-C5, and one for generating the new server-
less function, as described in IV-C6. The reason for choosing
two distinct models is two-fold:
Primarily, the tasks these two models will be performing are
different. The summarization model should be able to create an
abstractive summary from the code given to it as context along
with capturing the architectural information. This necessitates
that it has a long context length, so that the input prompt can
accommodate all the code needed to create the summary. Since
a dedicated benchmark does not exist for this task, we use the
ChatBot Arena2 [29], which evaluates human preference.
However, the code generation model performs a coding task
for which there are existing benchmarks (such as HumanEval
[9] and MBPP [10]) and fine-tuned models (such as DeepSeek-
Coder, CodeQwen). We select models from the top 10 of the
EvalPlus leaderboard3 [30], while ensuring diversity across
size and availability. Both EvalPlus and Chat-Bot Arena are
evolving leaderboards, and the models selected were in the top
10 at the time of conducting the study.
Secondly, using the same model may propagate biases, such
as which part of the codebase is important. This avoids the
possibility of the model creating a summary that can only
be fully deciphered by itself, and not by other models and
humans.

We selected Gemini-1.5-Pro [31] for codebase summariza-
tion. The models selected for code generation are described
in Table I below. Refer II-B for an explanation on ”Number
of Parameters” and ”Context Window Size”. ”Availability”
indicates whether the model can be hosted on-premise (Local)
or if an API call to an externally managed server is needed
(API). For those that offer both, we highlight the method
we used for the study in bold. ”License Type” refers to
whether the model weights are publicly available (Open) or
not (Proprietary).

Model Name Number of Context Window Availability License Type
Parameters Size (in tokens)

Artigenz-Coder-DS-6.7B 6.7B 16,384 Local/API Open
CodeQwen1.5-7B-Chat 7B 64K Local/API Open
DeepSeek-V2.5 236B 128K Local/API Open
GPT-3.5-Turbo Unknown 4,096 API Proprietary
GPT-4 Unknown 8,192 API Proprietary

TABLE I: Selected Models for Code Generation
3) Repository Selection: To select open-source repositories

using the serverless architectural style, we utilize the Won-
derless [32] and AWSomePy [33] datasets. The Wonderless
dataset is a collection of 1,877 serverless applications from
GitHub in various languages. 72.2% of the repositories in-
cluded are in JavaScript or TypeScript, 19% in Python, and
2.7% in Java. The AWSomePy dataset consists of 145 AWS
Lambda based serverless functions written in Python. We aim
to choose at least one repository in JavaScript, TypeScript and
Python each as they make up almost 70% of runtimes used on
AWS Lambda 4. In our selection, we also seek to ensure that

2Leaderboard available at https://lmarena.ai/
3Leaderboard available at https://evalplus.github.io/leaderboard.html
4https://www.datadoghq.com/state-of-serverless/

https://lmarena.ai/
https://evalplus.github.io/leaderboard.html
https://www.datadoghq.com/state-of-serverless/


Fig. 1: Study Design

the repository is not a demo or toy application, by filtering
based on number of GitHub stars and manual inspection.
Finally, we desire repositories that have tests defined with
high test coverage to perform evaluations related to RQ1, as
described in IV-C7.

First, we sort the datasets based on GitHub stars and forks in
decreasing order, to prioritize popular real world repositories.
We then look for repositories that contain tests. As a first
step heuristic, for every repository, we look for files or folders
with ”test” as a substring of their name. Then, for repositories
with ≥ 30 stars on GitHub, we manually evaluate the quantity
and quality of tests present. We found that some repositories
had test files that were empty or too trivial to justify their
selection. Additionally, several repositories contained server-
less functions as only a small part of the entire codebase,
usually for testing, and did not have tests for them. We also
reject repositories that have been archived, since they may
be deprecated or no longer relevant or maintained. For those
repositories that had an acceptable number and quality of
testcases, we calculated the test coverage and results. Based
on these results, we selected four repositories. We describe
the selected repositories in Table II below. All the repositories
selected were from the Wonderless dataset.

Repository Name Language Stars Forks No. of Functions
codebox-npm Javascript 352 27 10
laconia Javascript 326 30 15
TagBot Python 91 18 2
StackJanitor Typescript 37 2 5

TABLE II: Selected Repositories

4) Function Selection: For each repository, we selected
up to 3 functions to mask so that they can be generated
by the LLM, enabling us to assess the model’s performance
across varying levels of complexity, length, and structure. We
desire functions that have tests associated with them to enable
the evaluation of the generated code. To this end, for each
selected repository, we calculated the test coverage using the
testing framework used in the repository. We then selected the
functions with the highest statement coverage, using source
lines of code as a tiebreaker. We finally select 10 serverless
functions for masking across the 4 repositories.

5) Context Selection: In our study, we experimented with
different levels of detail in the context provided to the LLM
for code generation, focusing on two primary sources: the
README file and a summary of the codebase which includes
the architectural information.

For the README-based context, we used the repository’s
README file, which typically offers a concise overview,
including a brief description, functionalities, and usage in-
structions. However, since README files often lack imple-
mentation details, this approach evaluated the LLM’s ability
to generate code with minimal context.

For the codebase summary-based context, we masked the
target serverless function to generate a detailed codebase sum-
mary that excluded it. We utilized Gemini-1.5-Pro (mentioned
in IV-C2) to extract the architectural structure and functionality
by identifying all other functions, their paths, and corre-
sponding code (shown in IV-C5). This structured summary,
enhanced with keywords like ”components,” ”connectors,”
and ”relationships” [27], provided context for evaluating the
LLM’s ability to reconstruct the masked function accurately.

Prompt for Codebase Summarization

Role Definition
Task Definition
Here is the codebase, with the path name of the file followed
by the contents of the file in triple backticks:
{FUNCTION PATH 1}
‘‘‘
{FUNCTION CODE 1}
‘‘‘
...

Additionally, masking a function involves generating its
function description (shown in IV-C5), which is later incor-
porated in the prompt for the LLM to generate the function
from its description. We used Gemini-1.5-Pro to produce this
function description from the function code. The full prompts
can be viewed in our replication package.



Prompt for Function Description Generation

Role Definition
Task Definition
The function path and the function code itself (enclosed in
triple backticks) are provided below:
{MASKED FUNCTION PATH}
‘‘‘

{MASKED FUNCTION CODE}
‘‘‘

6) Generation Methods: We follow multiple generation
methods through different prompts
Prompt Types: From the two kinds of context described
above, we create three prompts for function generation:

1) Zero Shot with README (Type 1 Prompt): As shown in
1, it contains no examples of other serverless functions
and their descriptions and only provides the README
file of the repository as context. The description of the
masked function is provided and the model is tasked
with generating the code for the serverless function.

Zero Shot with README

Role Definition: You are a ...
You are working with a FaaS codebase whose
README is as follows:
{README}
Task Definition
The function should have the following functionality:
{FUNCTION DESCRIPTION}
Detailed Instructions Including Formatting

2) Zero Shot with Codebase Summarization (Type 2
Prompt): As shown in 2, it also contains no examples
of other functions and descriptions, but includes the
architectural information through the summary of the
codebase, along with the description of the masked
serverless function.

Zero Shot with Codebase Summarization

Role Definition: You are a ...
You are working with a FaaS codebase whose
README is as follows:
{CODEBASE SUMMARY}
Task Definition
The function should have the following functionality:
{FUNCTION DESCRIPTION}
Detailed Instructions Including Formatting

3) Few Shot with Codebase Summarization (Type 3
Prompt): Along with the architectural information
through the summary of the codebase, this prompt
(shown in 3) also contains descriptions and function
code of other serverless functions in the repository.
These serve as guides for the model to generate the

Fig. 2: Avg. Pairwise CodeBLEU Scores for Generated Func-
tions per Model

code for the masked function from the given description.
This few-shot prompt allows the LLM to learn in-context
without modifying model parameters, as described in
Section II-C.

Few Shot with Codebase Summarization

Role Definition: You are a ...
You are working with a FaaS codebase whose
README is as follows:
{CODEBASE SUMMARY}

Task Definition
Here are some examples.
{EXAMPLE FUNCTION DESCRIPTION 1}
‘‘‘
{EXAMPLE FUNCTION CODE 1}
‘‘‘
{EXAMPLE FUNCTION DESCRIPTION 2}
‘‘‘
{EXAMPLE FUNCTION CODE 2}
‘‘‘
The function you generate should have the following
functionality:
{FUNCTION DESCRIPTION}
Detailed Instructions Including Formatting

The full prompts can be found in our replication package.
When making the prompts, we made an effort to be as detailed
and specific as possible.
Consistency Check: LLMs are probabilistic, and can produce
different outputs even with the same prompt. In the context
of our work, this can result in the generated code passing
tests and being of good quality in one run, but not in the
other. To alleviate this issue, we verify if multiple generations
using the same context generate similar code. We compare
code similarity using CodeBLEU [34], which is a weighted
combination of n-gram matches5, syntactic matches in the
Abstract Syntax Trees (ASTs) and semantic data-flow matches.
The results are shown in Figure 2. We see that generated
functions are quite similar to each other for a model, and
conclusions drawn by evaluating one function generated by a
model will hold even when the model is given multiple tries.
We finally generate 145 serverless functions for evaluation.

5an n-gram match is n tokens matching in order between the input and the output



7) Evaluation Metrics: We perform three kinds of evalua-
tions on the LLM generated serverless functions:
Functional Correctness Through Testing: To address RQ1,
we evaluated both the original and generated code using the
existing tests in each repository. Specifically, we recorded the
number of passing and failing tests for the entire codebase as
well as for the individual functions selected for generation. Af-
ter generating each function, we re-ran the tests and recorded
the updated counts of passing and failing cases.

To address RQ1.1, we initially conducted this evaluation
without any code modifications. Here, we used the generated
response of the LLM, cleaned to include only the code.
Although this process was done manually, it can be automated
by extracting only the text within triple backticks (```), as the
model was instructed to provide code in this format. However,
manual cleaning was necessary for cases where the model did
not follow the formatting instructions.

To address RQ1.2, we identified and fixed code generation
errors made by LLMs. Song et al. [35] study the errors
in LLM-generated code and create a taxonomy of observed
errors. We filter this to only include those errors that were
frequently observed and solvable with minimal human inter-
vention, shown in Table III. On average, we spent 15 minutes
per function fixing these errors. Following these corrections,
we recorded the updated counts of passing and failing tests,
both for the overall codebase and individual functions.

Error Categories Error Types

Semantic Errors

Condition Error Missing condition
Incorrect condition

Constant Value Error Constant value error
Reference Error Wrong method/variable

Undefined name
Calculation Error Incorrect arithmetic/ compari-

son operation
Incomplete Code Missing one statement
Memory Error Infinite loop

Integer overflow

Syntactic Errors

Conditional Error If error
Loop Error For/ While error
Return Error Incorrect return value
Method Call Error Incorrect function name/ argu-

ments
Incorrect method call target

Assignment Error Incorrect arithmetic
Incorrect constant
Incorrect variable name
Incorrect comparison

Import Error Import error

TABLE III: Errors Identified and Fixed in Generated Function

Code Quality through Code Metrics: Though the component
generated may be functional, in the sense that it passes tests,
we also desire code that is of good quality, to ensure quality
attributes such as maintainability, readability and extensibility.
In addressing RQ2, we quantify code quality using code level
metrics. Our choice for metrics is guided by previous work by
Jin et al. [36], who analyze Java, JavaScript, and Python repos-
itories. The popular Chidamber & Kemerer object-oriented
metrics [37] are not applicable, since serverless functions
written in the languages studied in this work need not be
object-oriented. This is further supported by Jin et al. [36],
who also avoid using OO metrics in similar contexts. We

calculate the following metrics for the original and generated
serverless functions:

1) Source Lines of Code (SLOC) quantifies the size of a
program by counting the number of lines which contain
source code.

2) Halstead’s Software Science Metric (Volume) [38] is
another measure to quantify the size of a program which
considers programs as a collection of tokens (operators
and operands).

3) McCabe’s Cyclomatic Complexity (CC) [39] is used to
measure the complexity of a program’s control flow. It
provides insight into the testability of the program, since
one with a high cyclomatic complexity has more paths
that need to be tested.

4) Cognitive Complexity (CogC) [40] is a metric designed
to measure the understandability of code.

Code Similarity using CodeBLEU: In answering RQ2,
we also measure how syntactically similar LLM generated
serverless functions are to human written ones through the
CodeBLEU [34] metric, which is described in IV-C6. A
high CodeBLEU score indicates that the human-written
and generated code are very similar, and the models may
have appropriately created the summary and generated
function. Though CodeBLEU measures semantic data-flow
similarity, we utilize it to compare the syntactic similarity
of serverless functions and use testing to evaluate semantic
correctness. This is because the generated function may not
pass tests despite a high CodeBLEU score with the original
function due to subtle differences in the code that affects
functionality or creates errors but does not significantly reduce
CodeBLEU, such as incorrect imports or exchanged variables.

V. RESULTS

A. RQ1

1) RQ1.1: Can LLMs generate functional serverless func-
tions without human intervention?:
Table IV summarizes the percentage of test cases passed
for the entire codebase and individual serverless functions,
comparing original and LLM-generated functions across all
models and prompt types. Type 3 prompts achieved the highest
average test passing rates, with 73% of tests passed for the
entire codebase. Comparing Type 1 prompt and Type 2 prompt
for serverless function generation, the latter resulted in a higher
test passing rates.

Figures 3(b-d) and (e-f) provide examples illustrating
how the prompt types impact the generated function’s
structure and functionality. In Figure 3(b), generated by
DeepSeek-Coder-V2 with the type 1 prompt, findTag() and
getStackJanitorStatus() rely on hard-coded strings
(e.g., "stackjanitor" and "enabled"). This approach
can reduce flexibility and misalign the function with actual
codebase expectations. In contrast, Figure 3(c), generated by
the same model with the type 2 prompt, avoids hard-coded
strings by referencing a variable, showing an improvement.
However, this version still lacks complete logic. Figure 3(d)



Model Name Repository Name

Percentage of Test Cases Passed (%)
Original Generated

Type 1 Prompt Type 2 Prompt Type 3 Prompt
(Language) § λ § λ § λ § λ

 p  ✓  p  ✓  p  ✓  p  ✓  p  ✓  p  ✓  p  ✓

Artigenz-Coder-DS-6.7B

laconia (JS) 100 100 74.36 74.36 0 0 74.36 74.36 0 0 74.36 74.36 0 0
codebox-npm (JS) 100 100 28.94 60.07 0 0 28.94 91.94 0 0 60.07 93.41 0 0
StackJanitor (TS) 100 100 67.57 67.57 0 0 67.57 67.57 0 0 67.57 67.57 0 0
Tagbot (PY) 93.33 100 0 0 0 0 82.67 82.67 0 0 - - - -
Avg. Model Performance 98 100 43 51 0 0 63 58 0 0 67 74 0 0

CodeQwen1.5-7B-Chat

laconia (JS) 100 100 74.36 74.36 0 0 74.36 74.36 0 0 74.36 74.36 0 0
codebox-npm (JS) 100 100 28.94 60.07 0 0 28.94 93.04 0 16.67 64.1 95.6 22.22 66.67
StackJanitor (TS) 100 100 68.47 68.47 11.11 11.11 67.57 70.27 0 33.33 67.57 70.27 0 33.33
Tagbot (PY) 93.33 100 0 0 0 0 82.67 86.67 0 37.5 - - - -
Avg. Model Performance 98 100 43 51 3 3 63 81 0 22 69 80 7 33

DeepSeek-Coder-V2

laconia (JS) 100 100 74.36 74.36 0 0 74.36 74.36 0 0 74.36 79.49 0 66.67
codebox-npm (JS) 100 100 31.87 91.94 0 0 91.94 94.51 0 41.67 94.14 95.6 38.89 66.67
StackJanitor (TS) 100 100 67.57 81.08 0 33.33 67.57 90.09 0 62.5 75.68 95.5 0 79.17
Tagbot (PY) 93.33 100 82.67 86.67 0 37.5 82.67 90.67 0 50 - - - -
Avg. Model Performance 98 100 64 84 0 18 79 87 0 39 81 90 13 71

GPT-3.5-Turbo

laconia (JS) 100 100 74.36 74.36 0 0 74.36 76.92 0 33.33 74.36 94.87 0 62.5
codebox-npm (JS) 100 100 60.81 91.94 0 0 60.81 94.87 0 55.56 60.81 95.6 11.11 66.67
StackJanitor (TS) 100 100 67.57 78.38 0 0 67.57 76.58 0 62.5 67.57 76.58 0 62.5
Tagbot (PY) 93.33 100 0 84 0 12.5 82.67 90.67 0 50 - - - -
Avg. Model Performance 98 100 51 82 0 3 71 85 0 50 68 89 4 64

GPT-4

laconia (JS) 100 100 74.36 76.92 0 33.33 74.36 100 0 100 74.36 87.18 0 20.83
codebox-npm (JS) 100 100 31.87 91.94 0 0 60.81 62.27 0 33.33 93.77 95.6 30.56 66.67
StackJanitor (TS) 100 100 67.57 75.68 0 0 67.57 90.09 0 62.5 67.57 86.49 0 62.5
Tagbot (PY) 93.33 100 82.67 86.67 0 37.5 82.67 90.67 0 50 - - - -
Avg. Model Performance 98 100 43 83 0 24 51 86 0 61 79 90 10 50

Average 98 100 49 70 1 10 66 79 0 34 73 85 7 44

TABLE IV: Test Case Pass Rates: § for Codebase Tests, λ for Function Tests;  p (No Human Intervention) vs.  ✓ (With
Human Intervention)

shows a further improvement from the type 3 prompt, where
findTag() is defined to return the tag object itself, which
aligns closer to the original serverless function (in Figure 3(a))
and demonstrates the benefit of more detailed context.

Table IV reveals that larger models namely DeepSeek-
Coder-V2, GPT-3.5-Turbo, and GPT-4 significantly out-
performed smaller models (CodeQwen1.5-7B-Chat and
Artigenz-Coder-DS-6.7B), regardless of prompt type. Notably,
DeepSeek-Coder-V2 achieved the highest performance with-
out human intervention, passing over 81% of codebase tests
and 13% of individual function tests with type 3 prompt. GPT-
4 followed with 79 % and 10% test passing rates, respectively.
In contrast, smaller models such as Artigenz-Coder-DS-6.7B
and CodeQwen1.5-7B-Chat showed significantly lower pass-
ing rates. Figure 3(d) generated by DeepSeek-Coder-V2, and
Figure 3(g) generated by Artigenz-Coder-DS-6.7B with the
type 3 prompt, illustrate this difference - the former provides
an accurate response in line with the original function, while
the latter produces only a stub.

The choice of language also influenced the functionality,
with javaScript-based repositories achieved higher pass rates
in comparision to the other languages.

2) RQ1.2: Can LLMs generate functional serverless func-
tions with minimal human intervention?:
The results after applying minimal human intervention to
the generated functions, as shown in Table IV, demonstrate
a significant increase in test passing rates across all mod-
els and prompt types. DeepSeek-Coder-V2, which performed

well with respect to RQ1.1, achieved over 90% success on
codebase tests and 71% on individual function tests when
using the Type 3 prompt. GPT-4 and GPT-3.5-Turbo also
showed substantial performance improvements, with pass
rates close to DeepSeek-Coder-V2. Even the lower-performing
models, Artigenz-Coder-DS-6.7B and CodeQwen1.5-7B-Chat,
saw marked improvements: their codebase test pass rates
increased from 67% to 74% and 69% to 80%, respectively.
However, their results still fell short of the larger models.

For instance, as illustrated in Figure 3(d) — an output
generated by DeepSeek-Coder-V2 — correcting a return error
based on the guidance in Table III, specifically by adjusting
findTag() to return the entire tag object instead of just
the tag value, improved the functionality of the generated
code. Conversely, Figure 3(g) shows an output generated by
Artigenz-Coder-DS-6.7B with the Type 3 prompt, which is
a stub to benefit from minor corrections, highlighting the
limitations of smaller models in producing functional code
even with minimal human intervention.

B. RQ2: How does the code quality of LLM-written serverless
functions compare to human-written code?

From Figure 5, we see an overall reduction in the values of
all code metrics except for some outliers in CogC for LLM
generated serverless functions. For average SLOC, we see a
reduction for all models and prompt types. Interestingly, we
see that coding specific models generate more SLOC than
the general purpose models, despite Artigenz-Coder-DS-6.7B



Fig. 3: Snippets from Functions: (a) Original, (b-d) DeepSeek-
Coder-V2 with Type 1-3 prompts, (e-g) Artigenz-Coder-DS-
6.7B with Type 1-3 prompts.

and CodeQwen1.5-7B-Chat being much smaller than GPT-3.5-
Turbo and GPT-4. Average CC of the functions generated by
the models is also lower than the original, with coding specific
models again demonstrating higher values despite smaller size.
We observe that CodeQwen-1.5-7B-Chat and GPT-4 generated
functions with higher CogC than the original functions, while
Artigenz-Coder-DS-6.7B, DeepSeekCoder-V2 and GPT-3.5-
Turbo have lower values than the original functions, with GPT-
3.5-Turbo generating the most understandable code. Halstead
volume of generated functions were much lower than the
original functions across all models.

Regarding the difference in code quality that the different
amount of context provided in the prompt to the models
make, we find no appreciable difference in average SLOC
and average Halstead Volume. However, we see a marked
reduction in average CC and average CogC when more context
is provided to the model, with the lowest values demonstrated
by the Few Shot Prompt with Codebase Summarization.

On comparing the similarity of human-written and LLM-

generated functions using CodeBLEU score, we see from
Figure 4 that Type 3 prompts make all models generate
functions that are much more similar to the human written
functions. We also see a correlation where larger models
generate code more similar to the originals, with DeepSeek-
Coder-V2 having the highest similarity score. Interestingly, in
many cases, providing the codebase summarization in Type 2
prompt reduced CodeBLEU score compared to using the Type
1 prompt, though the former produced functions that passed
more tests.

Fig. 4: Avg. CodeBLEU Scores for Generated Functions per
Model and Prompt Type

VI. DISCUSSION

In this section, we discuss lessons learnt from our study and
threats to validity.

A. Can LLMs generate functional serverless functions? (RQ1)

Yes, LLMs can be used to generate functional serverless
functions with varying performance based on model and
prompt type, but not entirely autonomously.

We observed that different levels of detail in the con-
text provided to the LLM for serverless function generation
significantly impact its performance. The Type 3 prompt
produces the most functional serverless functions. This prompt
type enabled better understanding of codebase structure and
interdependencies, which was particularly beneficial to the
larger models - DeepSeek-Coder-V2, GPT-4, and GPT-3.5-
Turbo. This underlines the importance of both model scale
and context in generating functional serverless functions.
Smaller models - Artigenz-Coder-DS-6.7B and CodeQwen1.5-
7B-Chat, constrained by their size, tend to generalize more,
reducing the precision needed for function generation.

Interestingly, with respect to RQ1.2, involving minimal
human intervention, the smaller models required substantial
corrections, while the larger models needed relatively minor
adjustments. However, in certain cases, the improvement in
the functionality of the generated code was more pronounced
for GPT-3.5-Turbo than GPT-4 which led GPT-3.5-Turbo to
outperform GPT-4. Upon manual inspection of the generated
functions, we found that GPT-3.5-Turbo tends to produce
simpler initial outputs which, although often lacking full
functionality, are generally easier to refine than GPT-4’s more
complex responses. GPT-4, while thorough in adhering closely



Fig. 5: Code Quality Metrics of Original and Generated Functions per Model (first row), per Prompt Type (second row)

to function requirements, occasionally produces code that is
more challenging to adjust with minor changes.

As observed in V-A, JS-based repositories achieve higher
pass rates, likely due to its prevalence in serverless functions.
This insight can be used when selecting LLMs for architectural
component generation.

Overall, while LLMs, especially the larger models, show-
case the potential to generate functional serverless functions
with minimal human intervention, there remains a gap between
generated and fully functional human-written architectural
components. This necessitates further research on leveraging
LLMs to reach human-level proficiency in generating server-
less functions autonomously, with an emphasis on maintaining
a human in the loop to refine functionality, handle complex
logic, and ensure practical applicability.

Main Findings for RQ1: LLMs can generate functional
serverless functions with varying performance based on
model and prompt type, but not to the extent to which
humans can. Nonetheless, this method can be employed to
aid architectural component generation.

B. How does the code quality of LLM-written serverless
functions compare to human-written code? (RQ2)

LLM-generated serverless functions show a reduction in
SLOC, CC and Halstead Volume compared to human-written
code. This suggests that LLMs produce concise and less com-
plex code that is easier to understand and maintain. However,
this simplicity can sometimes come at the expense of function-
ality, as demonstrated in Figure 3(g), where essential logic
was omitted, impacting functional accuracy. The code gen-
eration models Artigenz-Coder-DS-6.7B and CodeQwen1.5-
7B-Chat produced more SLOC and higher CC than general-
purpose models like GPT-4 and GPT-3.5-Turbo, despite their

smaller size. Among the models, larger ones, particularly
DeepSeekCoder-V2, achieved the highest CodeBLEU scores,
highlighting the importance of model size and prompt detail.

When comparing prompt types, Type 3 prompt, which
provides detailed architectural and functional context, sig-
nificantly reduced CC and CogC, leading to simpler, and
more understandable code. It also produced high similarity
between LLM-generated and human-written functions, as il-
lustrated in Figures 3(a) and (d). Despite the improvements
in complexity metrics, Type 3 prompts had minimal impact
on SLOC and Halstead Volume, indicating that while context
simplifies logic, it does not necessarily shorten code length.
This observation highlights the nuanced influence of context
in shaping code quality.

An interesting anomaly was observed with Type 2 prompts,
which occasionally reduced CodeBLEU scores despite gener-
ating functions that passed more tests compared to Type 1.
This suggests that functional accuracy doesn’t always align
with human-code similarity.

Overall, while LLMs generate simpler and more under-
standable code, their limited ability to handle complex logic
autonomously points to a trade-off between code quality and
functionality, necessitating further refinement to achieve the
desired functionality.

Main Findings for RQ2: LLMs can generate good quality
serverless functions compared to human-written code. Larger
models, combined with prompts that capture architectural
and functional context, produce simpler, more understand-
able, and functionally accurate code, albeit with some trade-
offs in complexity and functionality.



C. Defining Software Architecture in the Age of GenAI

Over the years, numerous definitions of software architec-
ture (SA) have been proposed over the years, including by
Perry and Wolf [41], Garlan and Shaw [1] and Jansen and
Bosch [42] 6 When one considers component generation as
a black-box, Jansen and Bosch’s definition of SA as a set
of design decisions [42] is more pertinent However, when
moving deeper, during generation, it is necessary to consider
the components that already exist in the system, how they
are connected and what constraints exist, which is Garlan
and Shaw’s definition [1]. As we move into an age where
GenAI is increasingly used in SA, it is imperative to be able
to move between these definitions depending on the level
of abstraction used. The need of the hour is accurate and
detailed documentation of these design decisions to enable
LLMs to generate the components and connectors subject to
the constraints defined in the design decisions. These design
decisions can be complemented by organizational context, and
all of this can in turn benefit from the usage of GenAI, such
as for documenting Architectural Decision Records (ADRs)
as proposed by Dhar et al. [43].

D. The Path Forward for GenAI in SA

Perhaps the biggest challenge we faced in conducting this
study was finding high quality data. Despite using published
datasets, we found the quality of tests and components to be
mostly unsatisfactory. Machine learning models need volumi-
nous high quality data [44], and while this data exists to an
extent for language modeling and code snippet generation, it is
much more scarce when considering architectural component
generation. There currently do not exist architecture specific
tasks and benchmarks to evaluate LLMs, probably due to the
aforementioned data scarcity.
The next issue that needs to be solved is the specific approach
to using LLMs for generating architectural components. Var-
ious methods like Chain-of-thought prompting [45], retrieval-
augmented-generation [46], knowledge graphs [47] [48] exist,
and agentic frameworks [49], [50] exist, but their effectiveness
for software architecture specific tasks have not been explored.
LLMs could also be seen as a solution to address the learning
curve of ADLs/DSLs where natural language could be con-
verted to an architectural model and further code could be
generated using model transformations. However, addressing
these problems requires deeper collaboration between the SA
and NLP communities.

E. Threats to Validity

We follow the categorization provided by Wohlin et al.
[51] and also provide brief explanation about efforts taken
to mitigate the identified threats or why it is not possible, as
suggested by Verdecchia et al. [52].
External Validity: Selection of LLMs used and their genera-
tion parameters (such as temperature) for creating the context
in the form of the codebase summary and for generating

6See SEI CMU’s ”What is your definition of software architecture”

the serverless function poses a threat to external validity.
However, we systematically select diverse LLMs using peer-
reviewed published leaderboards, namely ChatBot-Arena [29]
and EvalPlus [30], with EvalPlus specifically evaluating the
coding abilities of LLMs. An interesting threat to external
validity can be contamination of LLMs [53], which is when
LLMs are trained or fine-tuned on data that is later used
to evaluate their performance, leading to unrealistically high
scores. Since most LLMs are not open about the data they are
trained on, we have no way to mitigate this issue, especially
since the repositories listed in Wonderless and AWSomePy
were released in the public domain on which LLMs could have
been trained. Despite this possibility, as shown in the results
in Section V, LLMs were not able to generate completely
functional serverless functions.
Internal Validity: The effectiveness of the tests in the reposi-
tories selected can be a threat to internal validity. However, we
manually selected repositories which had high test coverage to
mitigate this. Selection of metrics presents another threat, since
both code quality and similarity are quite abstract concepts.
To address this, we used metrics commonly used in the SE
and NLP communities for measuring the same.
Construct Validity: A threat to construct validity stems from
the selection of repositories and serverless functions in them.
However, we utilize published datasets - Wonderless [32] and
AWSomePy [33]. We filter them on the number of stars,
quantity and quality of tests and test coverage to avoid picking
demo projects and retain repositories and serverless functions
that have real-world relevance.

VII. CONCLUSION AND FUTURE WORK

This study seeks to empirically explore the capabilities of
Large Language Models to automatically generate software
architectural components. We do this in context of serverless
functions which is an event-driven architectural stlye, due
to the small size of their basic architectural unit. Using a
range of models, including general-purpose models like GPT-
4 and code generation models like DeepSeekCoder-V2, and
diverse prompt types, we evaluate the generated architectural
components for both functional correctness and code quality.
We find that while LLMs often fail to generate fully functional
serverless functions autonomously, they can serve as a valuable
starting point, as minimal human intervention significantly
improves their functionality, enabling them to pass more tests.
We also observe that LLM generated serverless functions
display better metrics related to code quality, such as cy-
clomatic complexity, and cognitive complexity. Furthermore,
in its current state, one cannot, and probably should not
completely remove the human from the component generation
process, suggesting a human-centered GenAI approach, as put
forth by the Copenhagen Manifesto [54].
Future work involves exploring other techniques for generation
used at the code level, such as those mentioned in VI-D,
including exploring Retrieval Augmented Generation, multi-
agent frameworks, and other architectural styles such as mi-
croservices and monoliths with larger components.

https://insights.sei.cmu.edu/library/what-is-your-definition-of-software-architecture


REFERENCES

[1] D. Garlan and M. Shaw, “An introduction to software architecture,” in
Advances in software engineering and knowledge engineering, pp. 1–39,
World Scientific, 1993.

[2] A. Mehmood and D. N. Jawawi, “Aspect-oriented model-driven code
generation: A systematic mapping study,” Information and Software
Technology, vol. 55, no. 2, pp. 395–411, 2013.

[3] I. Malavolta, P. Lago, H. Muccini, P. Pelliccione, and A. Tang, “What
industry needs from architectural languages: A survey,” IEEE Transac-
tions on Software Engineering, vol. 39, no. 6, pp. 869–891, 2012.

[4] G. Bardaro and M. Matteucci, “Modelling robot architectures with aadl,”
Ada Lett., vol. 43, p. 59–63, Oct. 2023.

[5] X. Hou, Y. Zhao, Y. Liu, Z. Yang, K. Wang, L. Li, X. Luo, D. Lo,
J. Grundy, and H. Wang, “Large language models for software engi-
neering: A systematic literature review,” ACM Transactions on Software
Engineering and Methodology, 2023.

[6] J. Wen, Z. Chen, X. Jin, and X. Liu, “Rise of the planet of server-
less computing: A systematic review,” ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 5, pp. 1–61, 2023.

[7] A. Vaswani, “Attention is all you need,” Advances in Neural Information
Processing Systems, 2017.

[8] R. Sennrich, B. Haddow, and A. Birch, “Neural machine translation
of rare words with subword units,” in Proceedings of the 54th Annual
Meeting of the Association for Computational Linguistics (Volume 1:
Long Papers) (K. Erk and N. A. Smith, eds.), (Berlin, Germany),
pp. 1715–1725, Association for Computational Linguistics, Aug. 2016.

[9] M. Chen, J. Tworek, H. Jun, Q. Yuan, H. P. D. O. Pinto, J. Kaplan,
H. Edwards, Y. Burda, N. Joseph, G. Brockman, et al., “Evaluating large
language models trained on code,” arXiv preprint arXiv:2107.03374,
2021.

[10] J. Austin, A. Odena, M. Nye, M. Bosma, H. Michalewski, D. Dohan,
E. Jiang, C. Cai, M. Terry, Q. Le, et al., “Program synthesis with large
language models,” arXiv preprint arXiv:2108.07732, 2021.

[11] D. Jurafsky and J. H. Martin, Speech and Language Processing: An In-
troduction to Natural Language Processing, Computational Linguistics,
and Speech Recognition with Language Models. 3rd ed., 2024. Online
manuscript released August 20, 2024.

[12] T. B. Brown, “Language models are few-shot learners,” arXiv preprint
arXiv:2005.14165, 2020.

[13] M. Brun, J. Delatour, and Y. Trinquet, “Code generation from aadl to
a real-time operating system: An experimentation feedback on the use
of model transformation,” in 13th IEEE International Conference on
Engineering of Complex Computer Systems (iceccs 2008), pp. 257–262,
IEEE, 2008.

[14] E. Cavalcante, F. Oquendo, and T. Batista, “Architecture-based code
generation: From π-adl architecture descriptions to implementations in
the go language,” in Software Architecture: 8th European Conference,
ECSA 2014, Vienna, Austria, August 25-29, 2014. Proceedings 8,
pp. 130–145, Springer, 2014.

[15] H. Muccini and M. Sharaf, “Caps: Architecture description of situational
aware cyber physical systems,” in 2017 IEEE International Conference
on Software Architecture (ICSA), pp. 211–220, IEEE, 2017.

[16] M. Sharaf, H. Muccini, and M. Abughazala, “Aria: arduino code
generation based on the caps,” in Proceedings of the 12th European
Conference on Software Architecture: Companion Proceedings, ECSA
’18, (New York, NY, USA), Association for Computing Machinery,
2018.

[17] V. Tankov, Y. Golubev, and T. Bryksin, “Kotless: A serverless frame-
work for kotlin,” in 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), pp. 1110–1113, IEEE, 2019.

[18] F. Rademacher, J. Sorgalla, P. Wizenty, and S. Trebbau, “Towards
an extensible approach for generative microservice development and
deployment using lemma,” in European Conference on Software Ar-
chitecture, pp. 257–280, Springer, 2021.

[19] A. Suljkanović, B. Milosavljević, V. Inić, and I. Dejanović, “Develop-
ing microservice-based applications using the silvera domain-specific
language,” Applied Sciences, vol. 12, no. 13, p. 6679, 2022.

[20] P. Bareiß, B. Souza, M. d’Amorim, and M. Pradel, “Code generation
tools (almost) for free? a study of few-shot, pre-trained language models
on code,” arXiv preprint arXiv:2206.01335, 2022.

[21] L. Gong, J. Zhang, M. Wei, H. Zhang, and Z. Huang, “What is the
intended usage context of this model? an exploratory study of pre-trained

models on various model repositories,” ACM Transactions on Software
Engineering and Methodology, vol. 32, no. 3, pp. 1–57, 2023.

[22] A. Chen, J. Scheurer, T. Korbak, J. A. Campos, J. S. Chan, S. R.
Bowman, K. Cho, and E. Perez, “Improving code generation by training
with natural language feedback,” arXiv preprint arXiv:2303.16749,
2023.

[23] J. Wang and Y. Chen, “A review on code generation with llms:
Application and evaluation,” in 2023 IEEE International Conference on
Medical Artificial Intelligence (MedAI), pp. 284–289, IEEE, 2023.

[24] J. Jiang, F. Wang, J. Shen, S. Kim, and S. Kim, “A survey on large
language models for code generation,” 2024.

[25] N. Eskandani and G. Salvaneschi, “Towards ai for software systems,”
in Proceedings of the 1st ACM International Conference on AI-Powered
Software, pp. 79–84, 2024.

[26] V. R. B. G. Caldiera and H. D. Rombach, “The goal question metric
approach,” Encyclopedia of software engineering, pp. 528–532, 1994.

[27] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of NAACL-HLT, pp. 4171–4186, 2019.

[28] X. Liu, F. Zhang, Z. Hou, L. Mian, Z. Wang, J. Zhang, and J. Tang,
“Self-supervised learning: Generative or contrastive,” IEEE Transactions
on Knowledge and Data Engineering, vol. 35, no. 1, pp. 857–876, 2023.

[29] W.-L. Chiang, L. Zheng, Y. Sheng, A. N. Angelopoulos, T. Li, D. Li,
B. Zhu, H. Zhang, M. Jordan, J. E. Gonzalez, et al., “Chatbot arena: An
open platform for evaluating llms by human preference,” in Forty-first
International Conference on Machine Learning, 2024.

[30] J. Liu, C. S. Xia, Y. Wang, and L. Zhang, “Is your code generated by
chatgpt really correct? rigorous evaluation of large language models for
code generation,” Advances in Neural Information Processing Systems,
vol. 36, 2024.

[31] G. Team, P. Georgiev, V. I. Lei, R. Burnell, L. Bai, A. Gulati, G. Tanzer,
D. Vincent, Z. Pan, S. Wang, et al., “Gemini 1.5: Unlocking multimodal
understanding across millions of tokens of context,” arXiv preprint
arXiv:2403.05530, 2024.

[32] N. Eskandani and G. Salvaneschi, “The wonderless dataset for serverless
computing,” in 2021 IEEE/ACM 18th International Conference on
Mining Software Repositories (MSR), pp. 565–569, IEEE, 2021.

[33] G. Raffa, J. B. Alis, D. O’Keeffe, and S. K. Dash, “Awsomepy: A dataset
and characterization of serverless applications,” in Proceedings of the
1st Workshop on SErverless Systems, Applications and MEthodologies,
SESAME ’23, (New York, NY, USA), p. 50–56, Association for
Computing Machinery, 2023.

[34] S. Ren, D. Guo, S. Lu, L. Zhou, S. Liu, D. Tang, N. Sundaresan,
M. Zhou, A. Blanco, and S. Ma, “Codebleu: a method for automatic
evaluation of code synthesis,” arXiv preprint arXiv:2009.10297, 2020.

[35] D. Song, Z. Zhou, Z. Wang, Y. Huang, S. Chen, B. Kou, L. Ma, and
T. Zhang, “An empirical study of code generation errors made by large
language models,” 7th Annual Symposium on Machine Programming,
2023.

[36] S. Jin, Z. Li, B. Chen, B. Zhu, and Y. Xia, “Software code quality
measurement: Implications from metric distributions,” in 2023 IEEE
23rd International Conference on Software Quality, Reliability, and
Security (QRS), pp. 488–496, IEEE, 2023.

[37] S. R. Chidamber and C. F. Kemerer, “A metrics suite for object oriented
design,” IEEE Transactions on software engineering, vol. 20, no. 6,
pp. 476–493, 1994.

[38] M. H. Halstead, Elements of Software Science (Operating and program-
ming systems series). USA: Elsevier Science Inc., 1977.

[39] T. J. McCabe, “A complexity measure,” IEEE Transactions on software
Engineering, no. 4, pp. 308–320, 1976.

[40] G. A. Campbell, “Cognitive complexity: An overview and evaluation,”
in Proceedings of the 2018 international conference on technical debt,
pp. 57–58, 2018.

[41] D. E. Perry and A. L. Wolf, “Foundations for the study of software
architecture,” SIGSOFT Softw. Eng. Notes, vol. 17, p. 40–52, Oct. 1992.

[42] A. Jansen and J. Bosch, “Software architecture as a set of architectural
design decisions,” in 5th Working IEEE/IFIP Conference on Software
Architecture (WICSA’05), pp. 109–120, IEEE, 2005.

[43] R. Dhar, K. Vaidhyanathan, and V. Varma, “Can llms generate archi-
tectural design decisions? - an exploratory empirical study,” in 2024
IEEE 21st International Conference on Software Architecture (ICSA),
pp. 79–89, 2024.

[44] A. Jain, H. Patel, L. Nagalapatti, N. Gupta, S. Mehta, S. Guttula, S. Mu-
jumdar, S. Afzal, R. Sharma Mittal, and V. Munigala, “Overview and



importance of data quality for machine learning tasks,” in Proceedings
of the 26th ACM SIGKDD International Conference on Knowledge Dis-
covery & Data Mining, KDD ’20, (New York, NY, USA), p. 3561–3562,
Association for Computing Machinery, 2020.

[45] J. Wei, X. Wang, D. Schuurmans, M. Bosma, F. Xia, E. Chi, Q. V. Le,
D. Zhou, et al., “Chain-of-thought prompting elicits reasoning in large
language models,” Advances in neural information processing systems,
vol. 35, pp. 24824–24837, 2022.

[46] P. Lewis, E. Perez, A. Piktus, F. Petroni, V. Karpukhin, N. Goyal,
H. Küttler, M. Lewis, W.-t. Yih, T. Rocktäschel, et al., “Retrieval-
augmented generation for knowledge-intensive nlp tasks,” Advances in
Neural Information Processing Systems, vol. 33, pp. 9459–9474, 2020.

[47] S. Pan, L. Luo, Y. Wang, C. Chen, J. Wang, and X. Wu, “Unifying
large language models and knowledge graphs: A roadmap,” IEEE
Transactions on Knowledge and Data Engineering, 2024.

[48] I. Abdelaziz, J. Dolby, J. McCusker, and K. Srinivas, “A toolkit for gen-
erating code knowledge graphs,” in Proceedings of the 11th Knowledge
Capture Conference, pp. 137–144, 2021.

[49] D. Huang, J. M. Zhang, M. Luck, Q. Bu, Y. Qing, and H. Cui,
“Agentcoder: Multi-agent-based code generation with iterative testing
and optimisation,” arXiv preprint arXiv:2312.13010, 2023.

[50] M. Zhuge, C. Zhao, D. Ashley, W. Wang, D. Khizbullin, Y. Xiong,
Z. Liu, E. Chang, R. Krishnamoorthi, Y. Tian, et al., “Agent-as-a-judge:
Evaluate agents with agents,” arXiv preprint arXiv:2410.10934, 2024.

[51] C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell, A. Wesslén,
et al., Experimentation in software engineering, vol. 236. Springer, 2012.

[52] R. Verdecchia, E. Engström, P. Lago, P. Runeson, and Q. Song, “Threats
to validity in software engineering research: A critical reflection,”
Information and Software Technology, vol. 164, p. 107329, 2023.

[53] Y. Dong, X. Jiang, H. Liu, Z. Jin, B. Gu, M. Yang, and G. Li,
“Generalization or memorization: Data contamination and trustworthy
evaluation for large language models,” arXiv preprint arXiv:2402.15938,
2024.

[54] D. Russo, S. Baltes, N. van Berkel, P. Avgeriou, F. Calefato, B. Cabrero-
Daniel, G. Catolino, J. Cito, N. Ernst, T. Fritz, H. Hata, R. Holmes,
M. Izadi, F. Khomh, M. B. Kjærgaard, G. Liebel, A. L. Lafuente,
S. Lambiase, W. Maalej, G. Murphy, N. B. Moe, G. O’Brien, E. Paja,
M. Pezzè, J. S. Persson, R. Prikladnicki, P. Ralph, M. Robillard,
T. R. Silva, K.-J. Stol, M.-A. Storey, V. Stray, P. Tell, C. Treude, and
B. Vasilescu, “Generative ai in software engineering must be human-
centered: The copenhagen manifesto,” Journal of Systems and Software,
vol. 216, p. 112115, 2024.


	Introduction
	Background
	Function-as-a-Service (FaaS) (Serverless Functions)
	Large Language Models and Code Generation
	Zero-Shot Prompting and Few-Shot Prompting

	Related Work
	Study Design
	Goal
	Research Questions
	Experiment Workflow
	Function Masking
	LLM Selection
	Repository Selection
	Function Selection
	Context Selection
	Generation Methods
	Evaluation Metrics


	Results
	RQ1
	RQ1.1: Can LLMs generate functional serverless functions without human intervention?
	RQ1.2: Can LLMs generate functional serverless functions with minimal human intervention?

	RQ2: How does the code quality of LLM-written serverless functions compare to human-written code?

	Discussion
	Can LLMs generate functional serverless functions? (RQ1)
	How does the code quality of LLM-written serverless functions compare to human-written code? (RQ2)
	Defining Software Architecture in the Age of GenAI
	The Path Forward for GenAI in SA
	Threats to Validity

	Conclusion and Future Work
	References

