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Abstract—Driving event recognition plays a crucial role in
understanding and enhancing road safety. This research focuses
on developing efficient time-series based models for Fall detection
in two-wheelers. Traditional machine learning models proved
inadequate in accurately classifying Fall scenarios due to their
inability to capture temporal transitions in kinematic states.
To address this limitation, time-series based Deep Learning
(DL) models are proposed, utilizing Long Short-Term Memory
(LSTM) networks. These networks enable direct learning from
raw time series data, eliminating the need for manual feature
engineering. Additionally, Bi-LSTMs were employed to capture
contextual information from both past and future timesteps,
further improving the model’s understanding of driving events.
The architecture was enhanced with an attention mechanism to
boost accuracy. Experimental results showcased that the proposed
Bi-LSTM model achieved an overall accuracy of 97%, with a
specific accuracy of approximately 92% in detecting Fall scenarios.
This research contributes to the development of an accurate Time-
series based system for Fall detection, facilitating improved road
safety in the context of two-wheelers.

Index Terms—Driving events, Fall detection, classification, time-
series data, LSTM, Deep Learning

I. INTRODUCTION

Transportation plays an indispensable role in our lives, and as
advancements continue to shape this sector, certain challenges
have emerged. One significant issue faced by developing
countries is the higher proportion of two-wheeler accidents.
Motorcycles and scooters are widely used as primary modes of
transportation in these regions, but unfortunately, they pose a
greater risk to riders due to their inherent vulnerability. Unlike
enclosed vehicles, two-wheelers lack structural protection,
leaving riders significantly more exposed to injuries in the
event of a Fall. This vulnerability is reflected in the statistics, as
highlighted in a recent report published by the Ministry of Road
Transport and Highways. According to the report [1], more
than a third (37%) of road accident fatalities in 2019 involved
two-wheeler riders. The problem extends beyond developing
countries, as motorcycle and moped fatalities account for a
considerable proportion (17.7%) of the total number of road
accident fatalities in Europe [2]. Comparatively, the likelihood
of a motorcycle rider dying in a Fall is 26 times higher than that
of a passenger car occupant, considering the distance traveled.
These distressing figures clearly indicate that riders are among
the most vulnerable road users [3].

Every day as many as 1,40,000 people are injured on roads
across the world, of which more than 3000 die and around
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15,000 are disabled for life [4]. The implications of such
accidents are not limited to the individual riders alone; they
also pose a significant risk to the general population. When an
accident occurs, the response time to provide medical assistance
and minimize harm is crucial. Unfortunately, the inherent
risks associated with two-wheelers, coupled with the lack of
structural protection, often result in severe injuries or fatalities.
This increased reaction time, compounded by the vulnerability
of riders, further contributes to the alarming number of deaths
on the roads.

II. MOTIVATION

The frequency of two-wheeler Fall poses a serious threat to
road safety, needing a thorough understanding of the underlying
causes. Numerous factors, including rider behavior, vehicle
attributes, road conditions, weather, and traffic circumstances,
have an impact on these collisions [5]. The intricate interactions
between human behavior, infrastructure, and environmental
elements that cause these incidents can be better understood
by thoroughly examining these factors. However, regardless of
the specific causes behind the occurrence of Falls, the early
detection and timely notification of accidents hold immense
potential for saving lives. Therefore, implementing a Fall
detection system in two-wheelers is of great importance as a
safety precaution.

To the best of our knowledge, there has been very little
work on identifying Fall scenarios, specifically in two-wheelers
utilizing deep learning techniques. To address this gap, we
propose the development of a Time-series based Fall detection
system for two-wheelers as an extension of our previous work
[6]. By training the system on a comprehensive dataset of
two-wheeler Fall scenarios, it will learn to recognize and
differentiate between normal riding behavior and instances
of Fall. This system will leverage time-series based DL
algorithms to detect and classify falls accurately, enabling
prompt communication with nearby hospitals or emergency
services.

The research holds significant potential to revolutionize two-
wheeler safety and emergency response systems. Additionally,
with the increasing usage of Electric Vehicles (EVs), the fall
detection system can play a crucial role in improving the safety
and reliability of electric two-wheelers, thereby promoting
their adoption in sustainable transportation. Leveraging deep
learning capabilities, the proposed fall detection system offers
a proactive approach to mitigate risks for two-wheeler riders.
Hence, our contributions in this field can be summarized as
follows:



1) Due to the unavailability of two-wheeler Fall data, we
have used a simulator to generate various Fall scenarios
and collect the data.

2) We have compared various traditional machine learning
algorithms using the data acquired.

3) We propose time-series-based DL models for Fall detec-
tion and demonstrate their superiority over traditional
machine-learning models in terms of accuracy.

III. RELATED WORK

Driver behavior is the primary cause of two-wheeler ac-
cidents. There have been works on studying driving event
recognition in the case of four-wheelers using classical and
machine learning approaches. In this context, there are various
frameworks [7], [8], [9] that use unsupervised, semi-supervised
and supervised models for the multi-class classification of
driving maneuvers and also identify the specific types of
abnormal driving behaviors from sensor fusion data of four-
wheelers. A few works on driving behavior studies for two-
wheelers are presented next.

A. Driver behavior studies for two-wheelers

There are some frameworks developed using traditional
machine learning models for two-wheelers. Mitrovic proposed
a simple system based on accelerometers, gyroscopes, and GPS
data to recognize patterns using HMMs [10]. In [11], a machine
learning framework was proposed to identify the class of riding
patterns using data collected from 3-D accelerometer/gyroscope
sensors mounted on motorcycles. Additionally, they also pro-
posed an approach for sensor selection to identify the significant
measurements for improved riding pattern recognition. But
this work does not capture the kinematic state change of
moving vehicles. Hence, to capture those dynamic transitions,
we have proposed time-series-based classification models for
two-wheelers. In [12], the authors adopted a Machine Learning
based movement identification process with an Artificial Neural
Network (ANN) algorithm.

There are some studies based on deep learning as well in
the context of time-series classification in general. LSTMs are
proven to excel in learning, processing and classifying such
types of data. Schalk Wilhelm Pienaar [13] proposed an LSTM-
RNN Deep Neural Network Architecture for human activity
recognition signifying the importance of the usage of RNN
for time-series data. A prior work [14] deals with collision
and hazard detection for motorcycles. This is usually done by
setting absolute thresholds on the accelerometer measurements,
which is not intuitive. In [15], they have used to GMMs and
KNN to identify fall and near fall scenarios. In [16], the authors
have proposed an airbag system using LSTM to decide on the
deployment of a wearable bike airbag in case of an accident.

The paper is further organized into the following sections. In
Section IV, we discussed the proposed methodology. Section V
provides a detailed experimental procedure. Section VI consists
of the conclusion and future scope.

IV. PROPOSED METHODOLOGY

The focus of this study is to develop a Fall detection system
using time-series based deep learning techniques. Our prior
work [6], which involved the development of time-series based
models for the analysis and classification of different driving
events. In this current study, we extend our research to address
the critical scenario of Fall detection. By leveraging deep
learning techniques and analyzing time-series data, we intend
to create a robust system capable of accurately detecting
and identifying Falls. This work represents an important step
forward in enhancing the understanding and response to Fall
events, thereby saving precious lives.

A. Data Collection

Given the unavailability of a real-world Fall scenario dataset
and the challenges associated with collecting real-time data due
to safety risks, we employed a simulator called BikeSim [17] to
generate diverse Fall scenarios that closely resemble real-world
situations. BikeSim is a highly regarded tool for simulating the
performance of two and three-wheeled vehicles, offering high
accuracy, detail, and efficiency. With over two decades of real-
world validation, BikeSim has become the industry standard
for analyzing motorcycle dynamics. Therefore, we utilized this
simulator in our research to create a range of Fall scenarios.

Our simulations consists of various scenarios commonly en-
countered during motorcycle rides, including left and right turns,
traversing speed bumps, riding straight, swaying and coming to
a stop. In the case of Fall scenarios, we specifically simulated
situations that are prone to lead to Fall. For instance, taking
steep turns at high speeds can result in Fall. To ensure a compre-
hensive understanding of Fall dynamics, we generated Fall sce-
narios with varying intensities, such as rolling over and falling.

By utilizing the BikeSim simulator, we were able to accu-
rately replicate real-world riding conditions and generate Fall
scenarios that closely resemble actual events as shown in Fig.
1. This approach allowed us to study and analyze the dynamics
and patterns associated with different Fall scenarios, providing
valuable insights into the factors contributing to Falls and the
potential consequences for riders. The simulated Fall provides a
controlled environment for investigating Fall detection method-
ologies and developing effective algorithms that can be used
in detecting Falls and ultimately enhance motorcycle safety.

The dataset collected from BikeSim consists of several
parameters, including A,, A,, A.(acceleration in the x, y,
and z directions), G, Gy, G (angular velocity around the
X, ¥, and z axes). During our preliminary data analysis, we
observed significant variations in these parameters over time
specifically in the context of Fall scenarios.

In the case of Fall scenarios, the acceleration parameters
(Ag, Ay, A.) exhibited notable fluctuations that deviated from
typical riding patterns. These fluctuations can indicate sudden
changes in the vehicle’s motion, such as sharp deceleration or
unusual lateral movements, which are indicative of a Fall event.
Similarly, the angular velocity parameters (G, G, G.) cap-
tured the rotational movements of the vehicle. The Fig. 2 depicts
the variations of various physical parameters such as longitudi-
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Fig. 1: Snapshots of various scenarios simulated in Bikesim during simulations.

Pressure - MPa Longitudinal speed - km/h

Roll, vehicle - deg Global Y coordinate - m

Brake Chamber Pressure - Sideways accident Wheel Speed (All) - Sideways accident

Yaw rate. vehicle (body-fixed) - deg/s

(’E [ Tain Frame ] [ 3in Framd = B LS Main Frame
. N\ e 5 Twe 1 speed)

80 ——=—— Tire 2 (equnalent speed) | o %0
°

21 100
5 79
[ 5 10 15 20 25 [} 5 10 15 20 2 [ 5 10 15 20 2 50 [
Time -5 Time - s Time -5

Global X coordinate - m

Roll - Sprung Masses - Sideways accident Y vs. X~ Trajectory - Sideways accident

Steer Torque Input - Sideways accident Sensor Yaw rate (Main) - Sideways accident

Driveline speed - rpm Torque - N-m
[=——T4an Framq 300 [ Whéel 1 lateral
—&— Wndel 2 lateral | 9000 /
10
S 2 € =0 =
200 8000
5
7000
e e e Lo ey =
0 5 10 15 20 2 0 5 10 15 20 2 0 5 10 15 20 0 5 10 15 20 2
Time - s Time - s Time - s Time - s
Yaw Rate - Sideways accident Fy — Lateral Forces - Sideways accident Spin Rates in Powertrain - Sideways accident Torques in Powertrain - Sideways accident
Steering control torque - N-m Angular rate - deg/s 9 Angular rate - deg/s
5 Stedr controlled| 45 Sensor 1 veriical (no G|
—&— Sensor 2 veriical (no G)
° = Main Frame
10
0 P b'A 5
5
05
5 0 & 10
0 5 10 15 20 25 0 5 10 0 5 10 15 20 2 ) 5 10
Time - s Time - s Time - Time - 5

Sensor Vertical Accel. (Main wio G) - Sideways accident

Sensor Pitch rate (Main) - Sideways accident

Fig. 2: Graphs

nal speed, angular velocities (yaw, pitch, roll), Force, vertical
acceleration, torque, etc. All these parameters have been cap-
tured during the simulation, but only Acceleration and angular
velocity values in the X, y, and z directions have been used for
training the models. In Fall scenarios, these parameters demon-
strated irregular patterns, deviating from the expected smooth

depicting the variations of different parameters during a simulation in Bikesim

and controlled movements observed during regular riding.
B. Classification using traditional machine learning models

We initially employed traditional machine learning models,
such as Support Vector Machines (SVM), K-Nearest Neighbors
(KNN), and Random Forests (RF) for classification. While these
models achieved high overall accuracy, their performance in
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classifying Fall scenarios was notably poor. The discrepancy
arises from the dynamic nature of the vehicle, where kinematic
states like acceleration, deceleration, and angular velocity
undergo significant changes during driving events such as
turns, Fall, and braking. Traditional machine learning models
struggle to effectively capture these transitional patterns.

In contrast, neural network models exhibit the ability to
learn complex temporal relationships, making them well-suited
for capturing the dynamic changes in kinematic states during
driving events. By training these models on the time-series
data collected from the vehicle, they can effectively detect
and classify different driving events, including Fall scenarios.
The inclusion of temporal information enables the models to
capture nuanced variations in the data, enhancing their accuracy
in identifying Fall events.

C. Proposed DL-based time-series classification Models

To address the above limitation, we propose time-series
based classification models that are capable of capturing and
understanding the temporal transitions in kinematic states. By
leveraging neural network models, we can train classifiers that
have the capacity to capture and learn these intricate transitions.
Time-series-based models offer the advantage of considering
the sequential nature of the data, enabling them to recognize
patterns and dependencies over time that eventually lead to Fall.

1) LSTM

In addition to the rationale mentioned earlier, the reason for
choosing LSTM [18] to perform driving event classification is
its ability to learn from the raw time series data directly thereby
eliminating the need to manually engineer input features.
LSTM is an efficient recurrent neural network that can hold
information from the time series data for a longer duration of
time. It can be used to model sequential data and is hence used
to learn complex human behavior while riding two-wheelers.

2) Bi-LSTM

Bidirectional LSTMs are an extension of traditional LSTMs
that can improve model performance on sequence classification
problems. The input sequence given to the network consists
of the six features (4., Ay, A;, Gs, Gy, G.) of the dataset.
In problems where all timesteps of the input sequence are
available, Bidirectional LSTMs train two instead of one
LSTM’s on the input sequence [19]. The first LSTM traverses
on the input sequence in the given order, whereas the second
one on the reversed copy of the input sequence. This can
provide additional context of the driving event to the network
and result in faster and even fuller learning on the problem.

D. Attention mechanism

The attention mechanism [20] emerged innately from prob-
lems that deal with time-varying data (sequences). The main
objective of the attention mechanism is to filter the critical
representations out for the purpose of recognition. An attention
mechanism is used to redistribute the weights of representations.
It can highlight the vital information from the contextual
information by setting different weights. Our attention function

is straightforward; it takes the dot product of weights and
inputs followed by adding bias terms. After that, we add a
tanh followed by a softmax layer. In time-series problems,
all sequence elements generally contribute equally to the
result, but this may not be the case. For example, a sudden
change in acceleration along one direction could better indicate
a particular driving event. Hence, capturing those features
contributing to recognizing a particular event is critical. Hence,
we have enhanced the LSTM and Bi-LSTM models by focusing
on specific features that have more impact in recognizing a
particular event by embedding an attention layer.

1) LSTM with attention mechanism

LSTM cells can’t understand long terms dependencies from
arbitrary lengths. Therefore, their performance degrades as the
sequence length increases. As the name suggests, attention
furnishes a mechanism where output can attend to a particular
input time step for an input sequence of arbitrary length. Hence,
an attention layer is embedded on the LSTM layer. The simple
LSTM model cannot capture these critical features.

2) Bi-LSTM with attention mechanism

An attention mechanism focuses on the information fed out
from the hidden layers of Bi-LSTM. The simple Bi-LSTM
structure allows the networks to have both backward and
forward information about the sequence at every time step.
In this work, we have added an attention layer over the Bi-
LSTM layer for enhanced feature extraction. The output of the
attention layer is given to the dense layers.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS
A. Experimental setup

The aim of this work is to develop a system and efficient DL
models that outperform existing approaches in driving event
classification. The training was conducted on a MacBook Air
M1, which features an Apple M1 chip with an 8-core CPU
and 8-core GPU. We have used Jupyter notebook to perform
the experiments. The framework used in our work to build
various models is TensorFlow-Keras. In order to evaluate the
models, we have used the ‘accuracy’, the most commonly used
evaluation metric as denoted in Eq. (1).

TP+TN
TP+TN+FP+FN

where true positives (TP) and true negatives (TN) denote
the correct classifications of positive and negative examples,
respectively. False positives (FP) represent the incorrect
classification of negative examples into the positive class,
and false negatives (FN) are positive examples incorrectly
classified into the negative class.

ey

Accuracy =

B. Data pre-processing

A pre-processing step is essential to replace the missing
values to ensure the continuity of data and synchronization with
the video. The database comprises approximately 25,000 data
points, consisting of various driving events such as left turns,
right turns, straight rides, and stops categorized as ‘Normal’.
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Model Overall accuracy | Normal Fall
SVM 0.904 1.00 0.243

RF 0.934 0.93 0.765
LSTM 0.941 0.973 0.807
LSTM-attn 0.969 0.981 0.846
Bi-LSTM 0.968 0.943 0.884
Bi-LSTM-attn 0.976 0.962 0.923

TABLE I: Comparison of accuracies of the proposed models.
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Fig. 3: Epochs vs Loss

Additionally, it consists of critical scenarios like ‘Fall’. The
dataset is divided into training and test set consisting of 80%
and 20% of the original data, respectively.

C. Results

The obtained results are presented in Table I, showcasing the
overall and class-wise accuracies of the proposed models. The
table reveals that the Bi-LSTM model with an attention mecha-
nism exhibits the highest accuracy, particularly in Fall detection.
Both the LSTM and Bi-LSTM models with attention mech-
anisms demonstrate higher overall and class-wise accuracies
compared to other models. This highlights the importance of at-
tention mechanisms and their ability to capture relevant patterns
and features within the temporal data. Although the Bi-LSTM
model has slightly lower overall accuracy than the LSTM model
with attention, it exhibits superior performance in detecting Fall
scenarios. This indicates its sensitivity towards Fall-specific pat-
terns. On the other hand, the LSTM model with attention, while
achieving decent overall accuracy, does not perform as well in
detecting Fall scenarios. This indicates limitations in capturing
the distinctive features or patterns associated with Falls.

The variation of accuracy and loss over the number of epochs
for the training and validation dataset for the LSTM model is
demonstrated by Fig. 3. Initially, the validation accuracy in-
creases then slows down. After 80 epochs, the accuracy and loss
values become stable. At 100 epochs, the model has converged.

VI. CONCLUDING REMARKS AND FUTURE SCOPE

In this work, we have addressed the challenge of critical
driving event classification, with a specific focus on Fall
detection. We have simulated various critical scenarios using
a simulator. The proposed time-series-based models exhibited
superior accuracy in detecting fall scenarios compared to tradi-

tional machine learning models, highlighting the significance
of considering temporal factors in classification. The proposed
models, particularly the Bi-LSTM with attention mechanism,
demonstrated superior performance in detecting Fall scenarios,
highlighting the importance of attention mechanisms and time-
series-based classification. Implementing this fall detection
system can potentially reduce response time for medical help,
ultimately decreasing fatalities. There are several avenues
for further exploration and enhancement of this work. The
performance of the proposed models can be evaluated on larger
and more diverse datasets, including real-world driving data, to
validate their effectiveness in practical scenarios. In addition to
the proposed fall detection system, there is potential for further
advancements in developing models for fall prediction to predict
potential fall events before they occur and alarm the rider.
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