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Abstract. Edge computing allows for reduced latency and operational
costs compared to centralized cloud systems. In this context, serverless
functions are emerging as a lightweight and effective paradigm for manag-
ing computational tasks on edge infrastructures. However, the placement
of such functions in constrained edge nodes remains an open challenge.
On one hand, it is key to minimize network delays and optimize resource
consumption; on the other hand, decisions must be made in a timely
manner due to the highly dynamic nature of edge environments. In this
paper, we propose POSEIDON , a solution based on Deep Reinforcement
Learning for the efficient placement of functions at the edge. POSEIDON
leverages Proximal Policy Optimization (PPO) to place functions across
a distributed network of nodes under highly dynamic workloads. A com-
prehensive empirical evaluation demonstrates that POSEIDON signifi-
cantly reduces execution time, network delay, and resource consumption
compared to state-of-the-art methods.

Keywords: Edge Computing · Serverless · Function Placement · Deep
Reinforcement Learning

1 Introduction

Edge computing has emerged as a promising solution to address the limitations
of centralized cloud systems, particularly in terms of reducing latency and oper-
ational costs. This paradigm shift enables computational tasks to be processed
closer to the data source, thereby enhancing the performance and efficiency of
applications [14]. In this decentralized framework, edge nodes, by their nature,
are often constrained in terms of resources such as processing power, memory,
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and storage. Additionally, the workload on these nodes can be highly fluctu-
ating, with varying demands depending on user activities and their dynamic
geographical location. This inherent variability necessitates a flexible and effi-
cient approach to managing applications running on edge nodes [26].

Recently, the serverless paradigm has emerged as a suitable solution for man-
aging applications in edge computing infrastructures [17]. Serverless allows devel-
opers to deploy applications as a collection of discrete, self-contained functions
that are designed to be lightweight and stateless [24]. In the context of edge
computing, such functions can be quickly moved across nodes to adapt to the
mobility of users and the shifting demands of applications.

Despite the advantages, dynamically placing serverless functions in edge
nodes presents significant challenges [19]. Ideally, functions should be placed
as close to users as possible to minimize network delays and optimize resource
consumption. However, resource-constrained edge cannot always host all nec-
essary functions and the mobility of users and the heterogeneity of functions
in terms of CPU and memory requirements further complicate the problem.
Moreover, such a dynamic environment requires timely decisions to cope with
fluctuating workloads [3]. In the literature, most of the work exploits combina-
torial optimization techniques, such as Integer Programming formulations, to
solve the placement problem effectively [2, 7, 8]. While these methods are capa-
ble of producing optimal solutions, they are often complex and time-consuming,
resulting in slow solution generation. Some approaches have proposed custom
heuristics as an alternative [11], but these methods have been demonstrated to
produce significantly lower quality placements compared to optimization-based
approaches [3].

In this context, we introduce POSEIDON 1, a novel solution that utilizes
Deep Reinforcement Learning [9] (DRL) to optimize the placement of serverless
functions at the edge. POSEIDON specifically leverages Proximal Policy Opti-
mization [21] (PPO) to distribute functions across a network of nodes, effectively
managing highly dynamic workloads. After determining the placement, POSEI-
DON uses a simplified Mixed Integer Linear Programming (MILP) problem to
optimize traffic routing across the different function instances. The proposed
method aims to reduce network delays, improve resource consumption, and pro-
duce timely solutions compared to existing state-of-the-art techniques.

The high-dimensional nature of the placement problem and continuous state
space render classical RL algorithms impractical. Traditional RL typically relies
on discrete state-action spaces, which are unsuitable for complex scenarios such
as edge computing. DRL overcomes this limitation by using neural networks to
approximate complex mappings from states to actions or action probabilities, en-
abling efficient and scalable learning in high-dimensional state spaces. Moreover,
being known for its ability to capture intricate interactions between states and
actions, DRL is well-suited to handle real-world environments that are complex
and dynamic, requiring flexible and adaptive learning methods [9, 13].

1 https://github.com/sa4s-serc/poseidon
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We evaluated POSEIDON through a comprehensive comparison with state-
of-the-art solutions. Our extensive empirical evaluation demonstrated that PO-
SEIDON is almost 16 times faster than the state-of-the-approach with respect
to decision time with almost comparable cost and delay to the state-of-the-art.

The rest of the paper is organized as follows. Section 2 presents the problem
and introduces our solution. Section 3 details the DRL solution and the MILP
formulation. Section 4 presents the empirical evaluation of POSEIDON and the
comparison against the state-of-the-art. Section 5 describes some relevant work
and concludes with Section 6.

2 Problem and Solution Overview

In POSEIDON , an edge topology is defined as a graph where N is the set of
nodes and the edges are the links between them. Each pair of nodes i and j is
characterized by δij , representing the network delay between them. F is the set
of functions that could be deployed on the edge topology. We assume that users
can connect to any of the nodes in N based on their geographical proximity to
the closest one. Thus, for each function f and node i, the incoming workload for
a function f to node i is defined as wf,i, representing the number of requests for
f arriving at node i. Since each node is resource-constrained and cannot host
all functions, we assume that each node can route the requests to any other
(nearby) node j. Thus, the problem POSEIDON tackles is twofold:

1. Deciding whether an instance of function f should be placed on node i
(placement);

2. Deciding how the workload incoming to any node i for function f should be
routed to any other node j (routing policies).

2.1 Solution overview

To address these problems, POSEIDON leverages DRL for placement and a
MILP formulation for routing policies. The goal of POSEIDON is to minimize
both (i) the overall network delay, i.e., the latency while serving function re-
quests, and (ii) the cost of running the function instances. The former goal
focuses on placing functions as close to users as possible to minimize routing
delays. The latter goal aims to use the minimum number of nodes to serve all
the workload with minimal overhead. POSEIDON ensures a balance between
these conflicting objectives using a user-defined trade-off. POSEIDON works in
three phases and its architecture is shown in Figure 1.

The placement phase, detailed in Section 3.1, is dedicated to computing the
function placement. To achieve this, POSEIDON organizes the functions F into
a queue qF , prioritized by their specific criteria such as frequency of requests
or resource requirements. Then, a DRL agent considers each function one at a
time, starting with the highest priority. For each function, the agent computes
a placement vector, a boolean vector cfi , which indicates whether a function
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Fig. 1: POSEIDON architecture.

f should be placed on node i. The agent leverages comprehensive information
from the topology, including inter-node delays, available hardware resources, and
function parameters such as memory requirements. It also considers the workload
of the function instance, reflecting the traffic of function requests at each node.
This information is used to infer an optimal function placement that satisfies
our objectives.

In the routing phase, the function placement determined by the agent is used
to compute the routing policies, as detailed in Section 3.2. In this phase, every
node i could host an active function instance and/or route a portion of the
requests to another node j with a previously placed f instance. This is done
by computing matrix xf

i,j, where each value is a real number between 0 and 1
that represents the fraction of the workload incoming to node i for function f
that should be routed to node j. To compute the routing policies, POSEIDON
utilizes the generated function placements to formulate a MILP problem. The
constraints of this problem ensure that all function requests are redirected to
nodes with a running instance of the function. The objective is to minimize the
network delay of function requests and the cost of running the functions, thereby
aligning with the overall solution objective.



POSEIDON : Efficient Function Placement at Edge using Deep RL 5

In the learning phase, the state of the topology is updated, and a reward R
is calculated, as detailed in Section 3.3. This reward mechanism ensures that the
DRL agent learns to place the functions in a manner that minimizes both the
total network delay and the operational costs of the function instances.

3 POSEIDON

Table 1: Inputs, Outputs and Reward Variables
Component Symbol Description

Topology Data
Inter-Node Delay δi,j Network delay between node i and

node j
Available node memory mi Available memory on node i
Available node cores ki Available CPU cores on node i

Function Data
Function Workload wf,i Workload for function f on node i

Function memory mR
f Memory required by function f

Function cores kR
f,i Average CPU cores required by

instances function f on node i

Monitored Data
Total Delay T Total network delay
Total Cost C Total cost of running placed functions
Output Data
Placement vector cf,i Boolean decision variable

representing whether function f is
placed on node i.

Routing policy xf,i,j Real decision variable representing
the fraction of f workload incoming
into node i to be routed to node j

This section details the three phases of POSEIDON . To facilitate the read,
we included the most important variables used in our formulation in Table 1.

3.1 Function Placement

POSEIDON uses five vectors to represent the state of the topology, D, A, W ,
M , T . D is the delay vector where each element is the inter-node delay δi,j , A is
the available resources, W is the workload of the current function f , M encodes
the parameters of the current function and T denotes the cumulative delay of
the topology. The delay vector D can be represented as:

D =
[
δ1,1 . . . δ1,n δ2,1 . . . δ2,n . . . . . . δn,1 . . . δn,n

]
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with δi,i = 0 (i.e, local communications do not have delays) and δi,j = δj,i (i.e.,
delay is symmetric) for any node i and j.

The available resources in the topology A, consist of the available memory mi

and available CPU cores ki of each node i. This variable captures the available
hardware resources at each node and is updated after placing each function
instance to account for the resources consumed by the placed functions. Formally,

A =
[
k1 m1 k2 m2 . . . kn mn

]
The workload of the current function f , which is denoted by W , is composed
of the function workload at each node i denoted by wf,i. Such data helps de-
termine whether a function needs to be placed on a specific node based on the
amount of function requests being received by it. The function parameters are
passed into the state vector in the form of a vector M consisting of mR

f , mR
µ , mR

σ

where the latter two represent the mean and standard deviation of the resource
requirements required by the remaining functions in qF . These guide the place-
ment decisions while keeping track of the resource requirements of the remaining
functions.

M =
[
mR

f mR
µ mR

σ

]
The total network delay T of the topology initially set to 0 is continuously

monitored and updated after placing each function f as follows:

T = T +

N∑
i

N∑
j

xf,i,j ∗ wf,i ∗ δi,j

where xf,i,j is the routing variable for routing requests of function f from
node i to j and is computed after the second phase, as described in Section 3.2

Feeding the cumulative total delay to the agent helps it learn to minimize
the delay effectively based on the existing network delay of the system.

The DRL agent implemented in POSEIDON system employs a policy gradi-
ent method known as Proximal Policy Optimization (PPO) to learn an optimal
policy π. This policy maps a given state s ∈ S of the topology (i.e., the execution
environment) to an action c ∈ A, where A ∈ {0, 1}N represents the action space
of the agent. This action space comprises of a set of boolean values for each node,
indicating whether a function instance should be placed on the corresponding
node or not. The state s exists within a continuous state space and encapsu-
lates environmental information that affect the placement of the function and is
formally defined as a feature vector as follows:

s =
[
D A W M T

]⊤
Since s is high dimensional and in a continuous state space it is difficult

to model the placement problem with RL methods such as Q-Learning which
requires tabulation and hence impractical to store and update the table, the need
for DRL arises. The agent consists of a neural network that takes S as input
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and estimates a policy π∗ which infers actions A∗. These actions are used to
compute the reward R for the agent after a suitable routing policy is computed,
as mentioned in Section 3.3.

3.2 Routing policies

Function placement is not sufficient to minimize the total network delay of the
system because a node with the running instance of the function may not be
able to handle the heavy workload expected in edges networks. In such cases,
the need to route a certain fraction of function requests to other available nodes
arises which would prevent overloading the node with user requests. To handle
the routing of function requests, the objectives are formulated as a Mixed Integer
Programming problem where the constraints are defined as follows:

Pf = {i | cf,i = 1, i ∈ N} ∀f ∈ F (1)

where Pf is the set of chosen nodes for placing a function. Thus, the following
constraint ensures that all the f workload from node i are routed only to the
nodes that belong to Pf .

Pf∑
j

xf,i,j = 1 ∀i ∈ N, ∀f ∈ F (2)

On the contrary, the following equation states that no fraction of f workload
should be routed from any node i to a node j that does not belong to Pf .

xf,i,j = 0 ∀i ∈ N, ∀f ∈ F,∀j /∈ Pf (3)

For each node j that host a function f , the required CPU cores to handle the
total workload forwarded to the node should be lower than the available cores
on that node. This is given by:

N∑
i

xf,i,j ∗ wf,i ∗ kRf,j ≤ kj ∀f ∈ F,∀j ∈ Pf (4)

The objective of the problem is to minimize the network delay of the placed
function. The network delay Tf for a specific function f is defined as:

Tf =

N∑
i

N∑
j

xf,i,j ∗ wf,i ∗ δi,j (5)

3.3 State Update and Solution Tuning

Based on the updated state of the community, the reward R is calculated
to facilitate the parameter updates and solution tuning (Algorithm 2). Solution
tuning involves training on the current state s of the system to improve the
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Algorithm 1 Update state after placing function f

Require: A, M , qF , Pf

1: for each i ∈ Pf do
2: mi ← mi −mR

f

3: ki ← ki −
∑N

j wf,j ∗ xf,j,i ∗ kR
f,i

4: end for
5: pop(qF )
6: f = peek(qF )

Algorithm 2 Episodic reward calculation after placing function f

1: Input: T , C, Tmin (minimum observed total network delay), Tmax (maximum ob-
served total network delay), Cmin (minimum observed cost) Cmax (maximum ob-
served cost)

2: Output: T
′

(normalized total network delay), C
′

(normalized cost), R (reward)
3: Calculate T

′
and C

′
using:

T
′
= 2

(
T − Tmin

Tmax − Tmin

)
− 1 C

′
= 2

(
C − Cmin

Cmax − Cmin

)
− 1

,
4: if size(Pf ) = 0 or mi < 0 or ki < 0 or RoutingSolver.STATUS ==

INFEASIBLE then
5: R = Rpenalty

6: else
7: R = RNC

8: end if
9: Update Tmin, Tmax, Cmin, and Cmax.

10: UpdateState(A,M, f, Pf )
11: if qF is empty then
12: Return Reward and end episode
13: else
14: Return Reward and repeat the process.
15: end if

DRL agent . The reward model for the environment is designed to ensure that
the agent comprehends the objectives of the problem and refines the policy π∗.
The agent receives different types of rewards based on its decisions. The network
delay and the system’s operational cost are incorporated into a reward term,
formulated to be minimized by the agent to improve it’s performance. Given
the conflicting nature of minimizing network delay and system cost, a user-
defined trade-off parameter α is introduced as coefficient of trade off with value
in range (0, 1) where increasing α corresponds to increasing weightage of cost
minimization objective and decreasing α corresponds to increasing weightage of
delay minimization objective. Mathematically, the reward term is defined as:

RNC = −(αC ′ + (1− α)T ′) (6)



POSEIDON : Efficient Function Placement at Edge using Deep RL 9

where T ′ and C ′ are normalized values of the total network delay and the sys-
tem’s cost, respectively. Normalization is employed to linearly scale these terms
between [-1,1], ensuring equal upper and lower bounds for both objectives. This
solves the scaling problem for different units, thereby maintaining a balanced
consideration of both network delay and cost (line 3 of Algorithm 2). The max-
imum processing times, denoted as Tmax is computed based on the edge-case
scenario. This scenario assumes a complete cyclic routing, wherein each request
must traverse through all nodes before being processed, whereas Tmin is set to
zero reflecting case where all requests can directly be served without need of
routing any to other nodes.

RNC is not sufficient to guide the agent for the objectives of POSEIDON .
The agent may attempt to exploit the system by not placing the functions on
any nodes, or it may make invalid decisions, such as placing functions on nodes
with insufficient compute power or generating placements that result in infea-
sible mixed-integer programming (MIP) solutions during the routing phase. To
discourage such undesirable behavior, the agent receives a a negative reward
for each invalid placement decision made by the agent which involves violating
compute resource, violating memory resources and violating routing constraint
represented by RPenalty (line 5 of Algorithm 2), strictly guiding it away from
these solutions.

RPenalty = N(Ωi)

where Ωi denotes an invalid placement decision.

4 Evaluation

The objective of the experiments is to evaluate the effectiveness and efficiency
of our approach by answering the following questions:
RQ1. How does POSEIDON compare to state-of-the-art solutions in terms of
delay and cost?
RQ2. How does POSEIDON perform with respect to decision time compared
to state-of-the-art solutions?
RQ3. How does solution tuning in POSEIDON mitigate invalid placements?

4.1 Experimental Setup

Execution Environment: We implemented a simulated edge environment us-
ing the Gymnasium by providing the specifications of the nodes and functions as
inputs to the simulation. Function requests were sampled using the Cabspotting
[15] dataset, wherein the node delays between the nodes were predefined. The
DRL agent was configured to learn within the Gymnasium environment 2, em-
ploying the Proximal Policy Optimization (PPO) algorithm, as implemented by
the Stable-Baselines3 library 3. The routing solver was integrated into the system
2 https://gymnasium.farama.org
3 https://github.com/hill-a/stable-baselines



10 P. Jain et al.

using the Linear Solver provided by Google’s OR-Tools. The POSEIDON was
trained for 50 workload distributions at different timesteps and then evaluated
on 150 different workload samples. Our simulation was run on an Ubuntu 23.04
machine with 16 GB RAM, powered by a 4.6 GHz 12th Gen Intel i7 processor,
and an Nvidia RTX 3060 GPU with 6 GB VRAM.

Experiment Candidates: We evaluated POSEIDON 4 by performing four sim-
ulations this was done by placing different number of functions on 5 nodes
equipped with 50, 50, 50, 25, 100 cores and memory capacities of 100,
100, 200, 50, 500 GB. The first two simulations, with α = 0 and α = 0.5,
involved placing a small payload of 4 functions with memory requirements of
50, 10, 10, 10 GB whereas the third and the fourth simulation with α = 0
and α = 0.5 respectively involved placing a large payload of 10 functions with
memory requirements of 10 GB each on the same set of nodes as described ear-
lier. For each simulation, the agent was trained using 50 workloads for 2000
timesteps, with each timestep lasting 100 seconds. The data used for training
came from the Cabspotting [15] dataset. The purpose of these simulations was
to assess POSEIDON ’s efficiency in not only minimizing the cost and delay but
the decision time as well.

1. CR-EUA : Criticality-Awareness Edge User Allocation [10]: an allocation
strategy tailored for safety-critical, low-latency applications where meeting strict
performance and reliability requirements is paramount. This approach aims to
maximize the number of requests processed at the highest level of criticality by
intelligently assigning edge resources to the most critical tasks. By prioritizing
requests based on their criticality levels, CR-EUA ensures that applications re-
quiring immediate attention receive the necessary computational resources to
function optimally.

2. VSVBP (Variable Sized Vector Bin) [6]: a placement and routing approach
designed to optimize resource utilization in edge computing networks. It works
by maximizing the number of allocated service requests while minimizing the
number of active edge nodes, thereby reducing operational costs and energy con-
sumption. The method ensures that the response times of deployed services stay
within acceptable limits by efficiently distributing workloads across the available
resources. VSVBP models the resource allocation problem as a variable-sized bin
packing issue, which makes it ideal for scenarios where both performance and
cost-effectiveness are critical

3. NEPTUNE [2, 3]: a solution designed for optimal placement of serverless
functions on edge nodes using MIP with the goal of minimizing both network la-
tency and resource utilization. NEPTUNE optimizes the placement of functions
by considering factors like network delay and minimizing the number of active
nodes to reduce operational costs. After the initial placement, it uses a second
optimization step to reduce service disruptions. Further, NEPTUNE also gener-
ates routing policies that direct traffic to the appropriate nodes, balancing the

4 https://github.com/sa4s-serc/poseidon
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(a) Box plot depicting the delay while
using each of the different approaches

(b) Box plot depicting the cost while us-
ing each of the different approaches

(c) Box plot depicting the average deci-
sion time while using each of the different
approaches

Fig. 2: Effectiveness of the approaches with respect to various metrics for the
small payload

workload and minimizing inter-node delays, while ensuring functions are only
terminated after they complete their current tasks.
Evaluation Metrics To measure the effectiveness and efficiency of the ap-
proach, we use three different metrics: i) Total Delay: this represents the sum of
the delay for each of the function requests in the topology, ii) Cost: this accounts
for the total cost of running the function instances on the nodes, iii) Decision
time: this metric evaluates how quickly the placement and routing of functions
are determined, reflecting the computational efficiency of the approach.

4.2 Delay and cost analysis (RQ1)

To compare the effectiveness of POSEIDON for cost and delay, we evaluated
POSEIDON with four different simulations as mentioned in Section 4.1. We can
see from the Tables 2 and 3 and Figures 2 and 3 that when α = 0 in case of both
large and small payload the average delay is very low but the average cost is
high for both POSEIDON and NEPTUNE. This is expected because for α = 0
both POSEIDON and NEPTUNE try to minimize the delay and the cost is not
considered a critical factor leading to the high average cost. Also both POSEI-
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(a) Box plot depicting the delay while
using each of the different approaches

(b) Box plot depicting the cost while us-
ing each of the different approaches

(c) Box plot depicting the average deci-
sion time while using each of the different
approaches

Fig. 3: Effectiveness of the approaches with respect to various metrics for the
large payload

DON and NEPTUNE outperform the other approaches when it comes to delay
for similar average costs. VSVBP and CR-EUA exhibit higher delays because
they prioritize maximizing resource utilization and processing the most critical
tasks. This focus on handling critical requests often leads to resource overload-
ing, increasing processing times. On increasing α from 0 to 0.5, averaging over
small and large payloads, the average costs are much lower, dropping by 77.74
% for POSEIDON and 71.52% for NEPTUNE, the average delays increases by
24.9 times for POSEIDON and 33.69 times for NEPTUNE, as both approaches
try to find a balance between the delay and the cost. Albeit overall, POSEIDON
has a lower cost and higher delay than NEPTUNE. Even though POSEIDON
is not as optimal as NEPTUNE but is comparable to NEPTUNE. CR-EUA
and VSVBP exhibit higher costs than POSEIDON because they prioritize pro-
cessing the maximum number of requests, which requires allocating additional
resources. Moreover, the stability of POSEIDON can be attributed to its use of
PPO, which is known for its robustness and ability to produce stable policies.
The training of the DRL agent ensures that that POSEIDON learns to handle
varying conditions in a controlled manner.
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Table 2: Comparison of POSEIDON with Other Approaches for small payload
α = 0 and α = 0.5

Metric
Poseidon Neptune CR-EUA VSVBP

α = 0 α = 0.5 α = 0 α = 0.5

Average Delay (in ms) 1.9420 53.1460 1.1060 38.7830 74.4574 71.6157

Average Cost 90.7000 20.2000 95.9500 26.4000 85.8500 85.1000

Average Decision Time (in ms) 3.1 2.4 26 52.1 4.5 4.5

Table 3: Comparison of POSEIDON with Other Approaches for large payload
α = 0 and α = 0.5

Metric
Poseidon Neptune CR-EUA VSVBP

α = 0 α = 0.5 α = 0 α = 0.5

Average Delay (in ms) 2.3156 51.8161 1.1744 37.6083 57.0778 54.1870

Average Cost 227.3333 50.5556 226.5000 66.6667 167.7222 178.1667

Average Decision Time (in ms) 7.3 7.3 61.7 190.6 4.7 4.6

4.3 Decision time analysis (RQ2)

To evaluate the efficiency of POSEIDON with respect to decision time compared
to other approaches, we ran four different simulations as mentioned in 4.1 we can
see from the Tables 2 and 3 and Figures 2c and 3c POSEIDON demonstrates
consistent decision times for α = 0 and α = 0.5 for both the small payload
and large payload whereas for NEPTUNE the decision time is higher. This can
be attributed to the fact that POSEIDON divides the solution into two parts:
i) the DRL agent solves the placement problem and has a very small number
of parameters, which enables faster decision-making with regards to placements,
and ii) the routing solver which solves the routing problem uses MILP but has
fewer constraints than NEPTUNE making POSEIDON 16.43 times faster. This
also further highlights the scalability challenges incurred by NEPTUNE due to
the computational complexity of solving the MILP problem with too many con-
straints. The other approaches, CR-EUA and VSVBP show comparable decision
times to POSEIDON but mostly give sub-optimal solutions with respect to cost
and delay.

4.4 Impact of solution tuning (RQ3)

Figure 4 shows the cumulative number of invalid placements performed by the
agent against the iterations of the solution tuning cycle. The graph shows a
converging curve, which can be correlated with the agent’s overall improvement
over the iterations as it learns to avoid invalid placements, which can be at-
tributed to RPenalty (refer Section 3). We observe an average decrease of 49.13%
in the aggregated number of invalid placements per workload’s tuning iteration,
indicating a strong positive learning trend.
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Fig. 4: Cumulative count of invalid placements versus iterations of solution tuning
for small payload (α = 0)

4.5 Threats to Validity

Threats to Construct Validity concern the use of controlled experimental setup
and simulations. To this end, we ensured that we used workloads and configura-
tions as close to the real-world scenario as possible. Specifically, we utilized the
Cabspotting dataset [15] to train and test POSEIDON . However, it is important
to note that while our simulations provide a controlled environment for evalua-
tion, further experiments in real-world are necessary to fully assess the practical
applicability and effectiveness of our findings.
Threats to Internal Validity concern the use of a static number of nodes for
placements. In practice, the DRL agent needs to be retrained if there is a change
in the topology, such as the addition or removal of a node. Although we can train
the DRL agent to minimize the occurrence of invalid or infeasible placements,
the nature of machine learning means that we cannot guarantee that the agent
will always produce valid placements. Therefore, it is essential to have an exter-
nal system in place to verify the placement decisions made by the DRL agent,
ensuring their correctness and feasibility.
Threats to External Validity of our approach concern the generalizability and
scalability of our approach. Although our approach has been applied to two dif-
ferent scenarios with 4 functions and 10 functions, respectively, the techniques
used in the approach are scalable to a larger number of functions. This is fur-
ther validated by the results as demonstrated in Section 4.3. As regards to the
generalizability, the approach can be integrated to any MEC system as long as
it provides with mechanisms to monitor the function parameters as well as to
perform routing and placement.

5 Related Work

Deploying applications on edge infrastructures has increasingly become the pre-
ferred method to meet the rising demand for low-latency applications [23]. Thus,
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the placement of such applications and their request routing in edge systems has
become a primary research focus [19] since existing solutions dedicated to cloud-
computing often neglect the unique challenges of the edge context [5] such as
managing the geographical distribution of computing nodes, maintaining low
network latency, and coping with resource constrained nodes [17]. Numerous
studies have tackled the challenges of placement and routing in edge comput-
ing [18, 20]. A common approach involves framing the problem of service place-
ment and workload routing as a Integer Programming problem [7,8].

For example, NEPTUNE [2] utilizes a MILP formulation to place serverless
functions on edge nodes. Given computed placement and routing policies, NEP-
TUNE optimizes resources using vertical scaling controllers based on control-
theory [4, 16]. Compared to NEPTUNE, POSEIDON shares similar objectives
but employs Reinforcement Learning for computing placements. This allows for
timely computation of new placements and better adaptation to dynamic and
fluctuating environments, such as edge computing. We view our approach as com-
plementary to NEPTUNE: POSEIDON can be embedded within NEPTUNE
communities to determine placements, while a simplified version of NEPTUNE
can then be used to compute routing policies based on these placements.

Unlike POSEIDON , which reduces latency by placing applications closer to
users, Ma et al. [12] focus on maximizing edge node utilization using MILP
without considering network delays as we do. Liu et al. [11] address network
delays by prioritizing requests based on criticality and response times, although
the approach doesn’t explicitly aim to minimize delays. POSEIDON does not
explicitly consider the criticality of functions. However, one can prioritize crit-
ical application by affecting the ordering mechanism of functions employed in
our RL-based approach. Finally, Tong et al. [22] utilize Mixed Nonlinear Inte-
ger Programming to maximize served requests in a hierarchical MEC network.
The main benefit of POSEIDON compared to ones based on combinatorial op-
timization is to provide solutions in an efficient and timely manner which allow
to better cope with edge nomadic users and highly-fluctuating workloads.

Raza et al. [1] present COSE, a framework that uses Bayesian Optimization
to find the optimal resource configuration and placement for serverless applica-
tions, minimizing cost while meeting performance objectives. COSE provides an
efficient, non-combinatorial, solution to the problem; however, compared to PO-
SEIDON , it focuses on cloud architectures and does not consider the intrinsic
characteristics of edge topologies.

Xu et al [25] propose an adaptive function placement framework utilizing a
Markov Decision Process to optimize serverless computing performance across
terminal devices, edge nodes, and cloud data centers. The framework supports
adaptation in real-time to allocate functions dynamically, aiming to minimize
execution costs while maintaining performance satisfaction. Compared to the
POSEIDON , the approach does not consider memory requirements, network
delay among edge nodes, and routing times, which are central for edge comput-
ing. Moreover, while the approach aim to optimize the utilization of the available
devices, POSEIDON also minimizes the overall network delay.
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6 Conclusions

In this paper, we introduced POSEIDON , an innovative method that integrates
Deep Reinforcement Learning (DRL) with traditional optimization techniques,
specifically Mixed Integer Linear Programming (MILP), to tackle the challenge
of serverless function placement in edge infrastructures. Our evaluation shows
that POSEIDON makes decisions that are near-optimal in terms of cost and
delay, while also achieving low decision-making times. For future work, we aim to
leverage workload predictions to proactively place function instances and foresee
potential resource saturation.
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