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Abstract— This paper examines the enhancement of
quadrotor efficiency through adaptive Fault-Tolerant Con-
trol (FTC) in quadrotors amidst operational uncertainties
and component inefficiency. State-of-the-art adaptive FTC
strategies often assume the uncertainties to be bounded
by a constant a priori, leading to ignorance of state-
dependent uncertainties. Unattended state-dependent un-
certainties that persist can lead to instability, especially
under actuator faults. The proposed adaptive FTC offers
actuator fault mitigation while tackling unknown (state-
dependent) uncertainties via suitably designed adaptive
laws. In addition, real-time fault detection and control
allocation are used simultaneously to avoid conservative
control application. The closed-loop system stability is
studied analytically and the effectiveness of the proposed
solution is verified on a realistic simulator in comparison
to the state of the art.

I. INTRODUCTION

Quadrotors have seen significant advancements in
both applications and operational capabilities, from
surveillance and delivery services to disaster response
missions in recent times [1]–[3]. The efficacy of these
systems critically hinges on the fault tolerance capabil-
ities of their control mechanisms, especially in the face
of actuator faults, for ensuring uninterrupted and safe
operations [4], [5].

Fault-Tolerant Control (FTC) strategies can be
broadly classified into passive and active approaches
(cf. [6]–[8] and references therein). Passive FTC designs
operate under predetermined fault conditions, avoiding
real-time fault detection and isolation (FDI). Conversely,
active FTC methodologies combine FDI with control
strategies [6]. Hence, active FTC approaches have found
more interests among the researchers owing to their real-
time adaptability and comprehensive fault mitigation
capabilities compared to passive FTC.

A. Related Works and Motivation
A foundational strategy in active FTC has been the

modification of actuator control allocation matrix to ac-
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commodate faults [7], [8]. However, such methods over-
look uncertainties and model imperfections. To bridge
this gap, researchers have pivoted towards various robust
(cf. [4], [9]–[13]) and adaptive control mechanisms (cf.
[5], [6], [14]–[16]). Nevertheless, Adaptive controllers
are advantageous over the robust controllers in tackling
uncertainties with unknown bounds.

However, the adaptive controllers [5], [6], [14]–[16]
can only tackle a priori bounded uncertainties. This
leaves out the scope of state (acceleration or velocity)-
dependent uncertainties from the inertial parameters
(e.g., uncertainty in mass or in inertia due to change
in center of mass). Ignoring this class of uncertainty not
only impacts control performance adversely, but it can
lead to unstable behavior (cf. [17]).

B. Contributions

In view of the above discussions, we propose an active
adaptive FTC framework for quadrotors, under single/
multiple actuator faults having the following highlights:

• The proposed method can tackle unknown state-
dependent model uncertainties without their a priori
knowledge (unlike [5], [6], [14], [15]).

• The adaptive framework can be tuned to tolerate ac-
tuator loss-of-efficiency up to a user-defined limit.

• FDI and control allocation processes are utilized
simultaneously with the adaptive control framework
to avoid any conservative control application.

The closed-loop stability is analysed via the Lyapunov
method. The effectiveness of the proposed method is
extensively verified on a realistic simulation platform
compared to the state of the art. Note that ‘actuator loss’
in this work signifies actuator loss-of-efficiency, and not
actuator ‘failure’ (i.e., when motors stop working). Some
works (cf. [14], [18]) use redundant motors to study
actuator failure case. However, discarding such structural
redundancy, tackling complete loss of motors in quadro-
tors is very challenging due to increased underactuation.
We plan to take such challenge in future work.

The rest of the paper is organised as follows: Sect.
II describes the system dynamics and the control prob-
lem; Sect. III discusses the proposed adaptive controller
design and analysis; Sect. IV presents the simulation
results and Sect. V provides concluding remarks.
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The following notations are used in this paper: ||(·)||
and λmin(·) denote 2-norm and minimum eigenvalue of
(·), respectively; I denotes identity matrix with appro-
priate dimension and diag{·, · · · , ·} denotes a diagonal
matrix with diagonal elements {·, · · · , ·}.

II. SYSTEM DYNAMICS AND PROBLEM
FORMULATION

Motor 4

Motor 3

Motor 1

Fig. 1. Schematic of a quadrotor with coordinate systems

A. System Dynamics

The Euler-Lagrange (EL) dynamics of a quadrotor (cf.
Fig. 1) under actuator Loss-of-Efficiency (LoE) is given
by [15], [19],

mp̈(t) +G+ dp(t) = γτp(t), (1a)
J(q(t))q̈(t) + Cq(q(t), q̇(t))q̇(t) + dq(t)=γτq(t), (1b)

γτp(t) = RWB (q(t))U(t), (1c)

where (1a) and (1b) are the position and attitude dynam-
ics of the quadrotor (cf. Table I for symbol definitions);
τq ≜

[
u2 u3 u4

]T ∈ R3 denotes the control inputs
for roll, pitch and yaw; τp ∈ R3 is the generalized
position control input in Earth-fixed frame, with U ≜[
0 0 u1

]T ∈ R3 being the force vector in body-fixed
frame and RWB is the rotation matrix from the body-fixed
coordinate frame to the Earth-fixed frame, given by

RWB=

cψcθ cψsθsϕ − sψcϕ cψsθcϕ + sψsϕ
sψcθ sψsθsϕ + cψcϕ sψsθcϕ − cψsϕ
−sθ sϕcθ cθcϕ

 , (2)

where c(·), s(·) and denote cos (·), sin (·) respectively.
Following the EL mechanics, the quadrotor dynamics
(1) satisfies the following properties [19]:
Property 1. The inertia matrix J(q) is uniformly pos-
itive definite ∀q and there exist j, j ∈ R+ such that
0 ≤ jI ≤ J(q) ≤ jI .
Property 2. There exist scalars cq, dp, dq ∈ R+ such
that ||Cq(q, q̇)|| ≤ cq||q̇||, ||dq(t)|| ≤ dq , ||dp(t)|| ≤ dp,
||G|| ≤ gp.

TABLE I
NOMENCLATURE

[XB Y B ZB ] Quadrotor body-fixed coordinate frame
[XW YW ZW ] Earth-fixed coordinate frame
p = [x y z] Quadrotor position in [XW YW ZW ]
q = [ϕ θ ψ] Quadrotor roll, pitch and yaw angles
m ∈ R+ Mass of drone

J,Cq ∈ R3×3 Inertia and Coriolis matrix
G = [0 0 mg] Gravity vector
dp, dq ∈ R3 Bounded external disturbance
0 < γ ≤ 1 Loss-of-Efficiency (LoE) Parameter

ωi speed of ith motor (i = 1, · · · , 4)

Property 3. The matrix (J̇ − 2Cq) is skew symmetric,
i.e., any non-zero vector r yields rT (J̇ − 2Cq)r = 0.

Remark 1 (LoE parameter). Since the quadrotor motion
is governed by the combination of multiple motors, γ
can be determined from the maximum allowable LoE
as γ = 1 − LoE: for example, under 70% LoE we
have γ = 1 − 0.7 = 0.3. We address the LoE at
individual motor level during control allocation process
subsequent to the control design (cf. Sect. III.C). The
value γ = 1 denotes healthy actuators. Whereas, γ = 0
denotes uncontrollable state under one or multiple motor
‘failure’, and we avoid such condition in this work.

Remark 2 (Desired Trajectories). The desired position
pd =

[
xd yd zd

]T
and desired yaw ψd are designed

to be sufficiently smooth and bounded. The desired roll
(ϕd) and pitch (θd) trajectories are derived using τp and
ψd following the standard process outlined in [20]).

Remark 3 (Uncertainty and Control Challenge). The
terms m,J,Cq, dp, dq and their bounds m, cq, dp, dq are
unknown for control design.

Remark 4 (State-dependent Uncertainty). It can be
noted from (1) that any uncertainty in m and J will
lead to state (i.e. p̈, q̈)-dependent uncertain dynamics.
Consideration of uncertainties to be bounded a priori by
a constant ignores such cases (cf. [5], [6], [14], [15]).
This work departs from the state-of-the-art methods in
this direction and tackles such uncertainties.

Assumption 1. There exist control parameters γm, E ∈
R+ such that

| γ
γm

− 1| = E < 1 (3a)

=⇒ γm > 0.5γ. (3b)

The condition (3) provides an operational range for
control design: for example, if one wants to make the
controller feasible to tackle LoE of upto 60% (i.e., γ =
0.4), then γm should be designed to be γm > 0.20.
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B. Loss-of-Efficiency Detection & Classification

Since developing control framework is the main focus
of the work, we use a standard Support Vector Machine-
based method as in [21] to assess motor LoE. A motor
is deemed faulty if its speed consistently differs from
the reference speed over a specified duration to avoid
false alarms from sudden speed changes.

Let Li, i = {1, · · · , 4} denote the the LoE of ith

motor. Furthermore, we define a diagonal matrix L as

L=diag{(1− L1), (1− L2), (1− L3), (1− L4)}. (4)

The matrix L is used later during control allocation
process in Sect. III.C.

Control Problem: Under Properties 1-3 and Assump-
tion 1, to design an adaptive FTC for the quadrotor
system (1a),(1b) under actuator Loss-of-Efficiency while
tackling uncertainties described in Remark 3.

III. PROPOSED ADAPTIVE CONTROLLER DESIGN

This section discusses the proposed adaptive FTC
framework, which consists of design of an outer loop
adaptive controller for position dynamics (1a) (cf. Sect.
III.A), an inner loop adaptive controller for attitude
dynamics (1b) (cf. Sect. III.B) and control allocation
process (cf. Sect. III.C). Subsequently, we shall remove
variable dependency for brevity.

A. Outer Loop Controller

Let us define the position tracking error as ep ≜ p−
pd, and an error variable sp as

sp = ėp +Φpep, (5)

where Φp is a positive definite matrix. Multiplying the
time derivative of (5) by m and incorporating (1a) yields

mṡp = m(p̈− p̈d +Φpėp) = γτp + φp, (6)

where φp ≜ −(G + dp +mp̈d −mΦpėp) is defined as
the (state-dependent) uncertainty in position dynamics.
Defining ξp ≜

[
eTp ėTp

]T
and using the inequality

||ξp|| ≥ ||ėp|| and Property 2, the upper bound on φp
can be derived as:

||φp|| ≤ dp + gp +m(||p̈d||+ ||Φp||||ėp||)
≤ K∗

p0 +K∗
p1||ξp|| (7)

where K∗
p0 ≜ gp + dp +m||p̈d|| and K∗

p1 ≜ m||Φp||
are unknown finite scalars. The outer loop control law
is proposed as:

τp =
1

γm

(
−Λpsp − ρp

sp
||sp||

)
(8a)

ρp =
1

1− E
(K̂p0 + K̂p1||ξp||), (8b)

where Λp is a user-defined positive definite gain matrix;
K̂pi is the estimation of K∗

pi, for i = 0, 1 computed
through adaptive laws given by:

˙̂
Kpi = ||sp||||ξp||i − αpiK̂pi, K̂pi(0) > 0 (9)

with αpi ∈ R+ being user-specified design scalars. Since
γ is not precisely known, U is computed from (1c) by
replacing γ with γm.

B. Inner Loop Controller

The attitude error is derived in line with [20]

eq = ((Rd)
TRWB − (RWB )TRd)

v
(10a)

ėq = q̇ −RTdR
W
B q̇d, (10b)

where (.)v denotes the vee map and Rd is the rotation
matrix defined in (2) and evaluated at (ϕd, θd, ψd).

Let us define an error variable sq as

sq = ėq +Φqeq, (11)

where Φq is a user-defined positive definite gain matrix.
Multiplying the time derivative of (11) by J and using
(1b), one can obtain

Jṡq = J(q̈ − q̈d +Φq ėq) = γτq − Cqsq + φq, (12)

where φq ≜ −(Cq q̇ + dq + Jq̈d − JΦq ėq − Cqsq)
is the overall (state-dependent) uncertainties in attitude
dynamics. Let us denote ξq ≜

[
eTq ėTq

]T
. Then using

the inequalities ||ξq|| ≥ ||eq||, ||ξq|| ≥ ||ėq||, and
Properties 1 and 2, we can derive:

||φq|| ≤ cq||q̇||2 + dq + j(||q̈d||+ ||Φq||||ėq||)
+ cq||q̇||(||ėq||+ ||Φq||||q||)

≤ K∗
q0 +K∗

q1||ξq||+K∗
q2||ξq||2, (13)

where K∗
q0 ≜ cq||q̇d||2+dq+j||q̈d||, K∗

q1 ≜ cq||q̇d||(3+
||Φq||) + j||Φq||, and K∗

q2 ≜ cq||q̇d||(2 + ||Φq||) are
finite unknown scalars.

The inner loop controller is proposed as

τq =
1

γm

(
−Λqsq − ρq

sq
||sq||

)
, (14a)

ρq =
1

1− E
(K̂q0 + K̂q1||ξq||+ K̂q2||ξq||2), (14b)

where Λq is a positive definite user-defined gain matrix,
and K̂qi (for i = 0, 1, 2) are the estimates of K∗

qi

governed by the adaptive law

˙̂
Kqi = ||sq||||ξq||i − αqiK̂qi, K̂qi(0) > 0, (15)

with αqi ∈ R+, (i = 0, 1, 2) being user-defined scalars.
The closed-loop stability result is stated below

Theorem 1. Under Properties 1-3 and Assumption 1,
the closed-loop trajectories in (6) and (12), using control
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laws (8), (14), and adaptive laws (9), (15), are Uniformly
Ultimately Bounded.

Proof: See [22].

Remark 5. In practice, the terms sp/||sp||, sq/||sq|| in
control laws (8a) and (14a) continuous are replaced with
continuous functions [17], [23], [24] without altering
the stability result.

C. Control Allocation and Overall Control Framework

The control allocation process maps the control inputs
vector u = [u1, τq] = [u1, u2, u3, u4] (u1 is determined
from τp and U as discussed below (9)) to the vector
of motor speeds Ω = [ω2

1 , ω
2
2 , ω

2
3 , ω

2
4 ] via the standard

process of minimizing a quadratic function [14]:

κ = argmin
Ω

Ω⊤LΩ s.t. u = BΩ, (16)

where B =


kf kf kf kf
lkf −lkf −lkf lkf
lkf −lkf lkf −lkf
kτ kτ −kτ −kτ

 (17)

is the control effectiveness matrix governed by the
configuration of the quadrotor. Herein, l is the distance
between the rotors and the center of gravity; kf is the
thrust force factor determined by the propeller’s geomet-
ric characteristics, and kτ is a drag torque factor [12].

The solution of (16) is obtained using a weighted
pseudo-inverse:

Ω =
[
LBT (BLBT )−1

]
u, (18)

where L is defined in (4).
The overall control framework is shown in Fig. 2.

IV. SIMULATION RESULTS AND ANALYSIS

The efficacy of the proposed controller was evaluated
using the Gazebo simulation environment, leveraging the
DFAutopilot Simulation framework1 within ROS, and
employing the Iris quadrotor model (with the quadro-
tor’s mass, including a payload, established at 1.6 kg).
The performance of the proposed adaptive controller is
juxtaposed with that of the Dual Adaptive Fault-Tolerant
Control [16] (henceforth referred to as DAFTC control)
integrated into the DFAutopilot framework.

A. Simulation Scenario and Parameter Selection

The quadrotor was assigned the task of following
a lemniscate trajectory. To thoroughly assess the per-
formance of the proposed design, five different sim-
ulation scenarios were established, incorporating all
fault cases as depicted in Tables II and III. For all
scenarios, the control parameters of the proposed con-
troller are selected to be: Φp = diag{1.0, 1.0, 1.1},

1https://dfautopilot.com/

Φq = diag{1.5, 1.5, 1.5}, Λp = diag{0.95, 0.95, 5.0},
Λq = diag{2.5, 2.0, 2.5}, K̂p0(0) = K̂p1(0) = 0.01,
K̂q0(0) = K̂q1(0) = K̂q2(0) = 0.1, αp0 = αp1 =
10, αq0 = αq1 = αq2 = 1,γm = 0.5 and, ϖp =
0.1, ϖq = 1. For a fair comparison, sliding vari-
ables required in DAFTC are selected same as in (5)
and (11). The other control parameters for DAFTC
are selected as Kc1 = diag{20.0, 20.0, 10.0}, Kc2 =
diag{100.0, 100.0, 25.0}, Kc3 = diag{10.0, 10.0, 8.0},
η = diag{0.1, 0.1, 0.1}, β = diag{7.5, 7.5, 5.0} and
λ = diag{10.0, 10.0, 5.0} (cf. [16] for their definitions),
which are optimized for the Iris model. Initial position
and attitude for the quadrotor are selected to be x(0) =
3, y(0) = 0, z(0) = 3 and ϕ(0) = θ(0) = ψ(0) = 0.

The performances of the controllers are illustrated
in Fig. 3-4, and in Tables II and III via Root Mean
Square (RMS) error for various fault cases. We tested
the controllers upto 60% loss of efficiency in a single
motor. It can be noted from Fig. 3 that the proposed
controller can compensate for such fault, whereas the
DAFTC controller fails to adapt and crashes (cf. Fig.
4). The RMS errors in Tables II and III, indicate that
the proposed controller consistently delivers remarkable
control performance. Further, the proposed controller is
able to significantly outperform the DAFTC in the case
of loss-of-efficiency in multiple motors while negotiat-
ing the sharp turns in the desired trajectory. This error
is seen to increase with the increase in the number of
rotors which suffer a loss of efficiency and the amount
of the loss for the DAFTC.

V. CONCLUSIONS

An adaptive FTC strategy for quadrotors was pro-
posed, which can tackle actuator loss of efficiency
under unknown (state-dependent) system dynamics and
external disturbances. Loss-of-efficiency parameter was
introduced along with control allocation reconfigura-
tion. The effectiveness of the proposed controller was
established against the state-of-the-art method under
various scenarios using Gazebo simulation using the
DFAutopilot Simulator framework.
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