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Abstract—Aggressive scaling down of transistor dimensions
has made process-aware circuit modeling a crucial task. Achiev-
ing accurate circuit modeling requires lengthy and resource-
intensive simulations. Machine Learning-based surrogate mod-
els, offering computational efficiency and speed, are viable
alternatives to traditional simulators. This paper introduces a
meta-learning approach designed to accurately capture process-
induced variations in the leakage power of VLSI circuits. The
impact of a wide range of fluctuations in operating conditions, in-
cluding temperature (-55°C to 125°C) and supply voltage (±10%)
has also been incorporated for leakage modeling. The proposed
meta-learning model is versatile, enhancing the performance of
underlying baseline machine-learning models while eliminating
the need for time-consuming hyperparameter optimization. Our
experiments on leakage estimation using 16 and 7 nanometer
FinFET technology nodes demonstrate an average improvement
of up to 50% and 48% in Mean Absolute Percentage Error
compared to stand-alone baseline models.

Index Terms—Meta-learning, Machine Learning, Circuit mod-
eling, Statistical Leakage Analysis, Deep Learning

I. INTRODUCTION

Recent advancements in VLSI (Very Large Scale Integra-
tion) technology, particularly in the sub-nanometer regime,
have created a critical demand for precise circuit behaviour
modeling. Shrinking transistor dimensions significantly surge
process variations, leading to a substantial increase in leakage
power. These manufacturing process variations introduce an
element of randomness in the physical structure of devices.
When coupled with environmental fluctuations, they exert a
notable influence on the electrical characteristics and overall
performance of digital circuits [1]. It is imperative to compre-
hend this behaviour by accurately and efficiently estimating
leakage power under various probable processes and envi-
ronmental conditions before circuit fabrication. Traditionally,
precise estimations are attained through Monte-Carlo (MC)
simulations employing tools like HSPICE [2]. While these
simulations yield accurate results, they are both resource-
intensive and time-consuming [3]. To address this issue, ef-
ficient surrogate models have been proposed. These models
can approximate circuit performance based on statistical pa-
rameters, significantly reducing computational demands and
substantially shortening the design-to-fabrication time needed
for IC (Integrated Circuit) development [4]. Many studies
have reported faster computational speed-ups than simulations
based on SPICE [4]–[7].
Most approaches focus on efficient simulation approximations

through fine-tuning models to a particular dataset. This results
in a lack of generalizability, necessitating fine-tuning models
after re-training for every new dataset. Additionally, this
approach mandates extensive exploration of a vast parameter
space to identify optimal hyperparameters. In contrast, our
method employs an outer model proficient in enhancing the
performance of non-optimized baseline models. The meta-
model is trained to deliver precise predictions based on the
output of these non-optimized baseline models. To our knowl-
edge, this is the first work utilizing meta-learning for Process,
Voltage, and Temperature (PVT) aware leakage estimations.

II. RELATED WORKS

Amuru et al. [4] proposed a computationally efficient
method to estimate leakage power and propagation delay under
PVT variations using gradient boosting. In [6], a multivariate
polynomial regression-based approach was proposed to es-
timate the leakage and total power of digital circuits from
statistical process variations. Janakiraman et al. [7] proposed
an Artificial Neural Network (ANN) based framework for sta-
tistical leakage analysis. Garg et al. [8] demonstrated leakage
modeling using Support Vector Machines for 45nm CMOS
technology. Sanyal et al. [9] introduced the STABLE algorithm
to accurately estimate leakage current using the Newton-
Raphson method and incorporating self-loading effects. Apart
from modeling circuit leakage power and propagation delay,
machine-learning algorithms have been utilized for optimizing
digital circuits [10] and at other abstraction levels of VLSI
design [11]. Machine-learning models, on their own, don’t
generalize well. Meta-learning techniques are commonly used
to distil knowledge from multiple learning instances, thereby
augmenting the capacity to generalize across a range of tasks
[12]. These algorithms have found extensive application in
enhancing performance across diverse tasks, including weight
initialization (MAML) [13], neural architecture search [14],
domain generalization [15], and hyper-parameter optimization
for few-shot learning (MetaSGD) [16], among others.

III. METHODOLOGY

A. Proposed hypothesis

Meta-learning has proven effective in enabling generaliza-
tion across diverse tasks. The presented approach utilizes
neural networks to implement a meta-learning strategy for
making subtle decisions between pre-trained models. The
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Fig. 1: Block level overview of MetaCirc algorithm

underlying assumption is that the pre-trained models exhibit
satisfactory performance (R2 Score > 0.9) and are arranged
in descending order based on their R2 Score. Experimental
results demonstrate that the suboptimal performance of pre-
trained models hinders the convergence of the meta-model.
The implementation encompasses both a meta-model and a
collection of baseline pre-trained models tailored for a specific
dataset. The meta-model’s role is to improve the predictions
made by the pre-trained models without the need to optimize
their hyperparameters. A high-level schematic of the proposed
algorithm is depicted in Fig 1. The pre-trained models are
trained to predict leakage power for a specific dataset. Mean-
while, the meta-model, which is a deep learning network,
learns to allocate weights to the predictions generated by these
models for a given data point. This approach enables the
meta-model to discern which model performs optimally for
a particular PVT value.

Wi = M(x) (1)

meta pred(ŷ) =

n∑
i=0

Wi × Pi(x) (2)

Initially, the pre-trained models (P0, P2, ..., Pn) undergo train-
ing on the dataset using default parameters. Subsequently, the
meta-model (M ) is trained to assign a weight to the prediction
produced by each pre-trained model given a specific input. The
model learns to dynamically generate a total of ”n” weights
(W1,W2, ...,Wn) for a given PVT input x, each weight Wi

being associated with a pre-trained model Pi. The output (ŷ) is
a weighted summation defined in Equ. (2), where x represents
the PVT input provided to both the meta-model and the set
of pre-trained models. Here, Pi(x) signifies the prediction
generated by the ith pre-trained model. Similarly, the weights
are determined by the meta-model as outlined in Equ. (1).
It’s important to note that these weights do not pertain to the
internal weights of the network, but rather, they represent the
outputs of the final layer of the meta-model (M).

B. Implementation

1) Data pre-processing: Given the significantly small mag-
nitude of leakage values for FinFETs (approx 10−8 scale), it
was imperative to rescale the ground truth values to facilitate
model convergence to an optimal state. The model input,
representing PVT variations, underwent standard scaling to
transform it into a normally distributed form with a mean of
zero and a standard deviation of one. As for the ground truth
values (leakage power), a combination of log scaling followed
by standard scaling was employed to adjust the skewness in
its distribution. Subsequently, the predictions were reverted to
their original scale through an inverse scaling process. Such
standardization technique has been demonstrated to enhance
model performance [17].
Algorithm 1 describes the pre-training and training of baseline
models and meta-models. Actual leakage values for various
PVT variations were obtained by conducting HSPICE simula-
tions for each circuit [4]. The baseline models (pre-trained
models) were trained on each dataset without undergoing
hyperparameter tuning. Subsequently, these pre-trained models
were arranged in descending order based on their R2 on the
training set, separately for each dataset. For each dataset, meta-
models were initialized, and their training process is outlined
in Algorithm 2. The mean square error (MSE) serves as the
loss criterion during the backpropagation of the meta-models.
A train-test split was executed with a ratio of 95% for training
and 5% for testing. All the data-preprocessing steps described
above were carried out using the Pandas [18], [19], Numpy
[20], and Scikit-Learn libraries [21]. The baseline models were
implemented using Scikit-Learn library [21], and deep learning
models (meta-models) using the PyTorch framework [22].

2) Predictions and model testing: Algorithm 3 provides
a comprehensive overview of the MetaCirc approach. Ini-
tially, the testing data, the corresponding pre-trained models
(P0, ..., Pn), and the trained meta-model ”M” are retrieved.
The predictions of the pre-trained models for the current
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data point are calculated and stored in ”pre-preds” (P (x)).
Subsequently, the data point is inputted into the meta-model
to generate weights for each of the pre-trained models’ predic-
tions. These weights are then applied to the predictions, and
their sum yields the final prediction, as illustrated in Equ. (1).

Algorithm 1 Model Training

1: Perform HSPICE simulations to create datasets
2: Initialize baseline models
3: for all Datasets do
4: Fetch training data
5: for i = 0 to n do
6: Train baseline model Pi

7: Report metrics (R2 Score, mAPE)
8: end for
9: for i = 0 to k do

10: Train meta-model Mk

11: Report metrics (R2 Score, mAPE)
12: end for
13: end for

Algorithm 2 Meta model prediction & backpropagation

1: Fetch pre-trained models & dataset
2: Initialize Meta-model ”M”
3: for i = 0 to num data points do
4: x, y = dataset[i] {x, y → PV T, ground truth}
5: P (x) = P0(x), P1(x), ..., Pn(x) {P(x) → Pre-trained

predictions}
6: W0,W1, ...,Wn = M(x) {Weights for P(x)}
7: ŷ = W0 × P0(x) +W1 × P1(x), ...,Wn × Pn(x) {Eq.

1}
8: loss = MSE(ŷ, y)
9: Backpropagate loss

10: end for

Algorithm 3 Overall algorithm

1: for all datasets do
2: Fetch pre-processed testing data, corresponding pre-

trained models (P), and meta-model (M)
3: for i = 0 to num data points do
4: x = testing data[i]
5: ∀ i ∈ [0, n] pre preds = Pi(x)
6: W0, ...,Wn = M(x) {W → Weights}
7: Prediction (ŷ) =

n∑
i=0

Wi × Pi(x)

8: ŷ = exp(rescale(ŷ))
9: end for

10: end for

IV. RESULTS & ANALYSIS

A. Experimental setup
HSPICE was utilized to conduct simulations for standard

cells in both the 16nm and 7nm FinFET technology nodes
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Fig. 2: Comparison between predictions of baseline and meta-
models

[23]. The simulation setup employed to generate the dataset
aligned with the one detailed in [4]. In total, 13 standard cells
were used to test the algorithm across both technology nodes,
resulting in 26 datasets. Two pre-trained models and two meta-
models were employed for each dataset to conduct a thorough
analysis. A total of 104 models were trained and evaluated.
The pre-trained models selected were Light Gradient Boosting
Model (LGBM) [24] and XGBoost model (XGB) [25]. These
choices were motivated by their efficiency in covering the
dataset using random weighted sampling without replacement
[26] while training weak learners. This characteristic signifi-
cantly enhanced the convergence rate of the meta-model. As
for the meta-models, a simple Multi-Layer Perceptron (MLP)
with 3 hidden layers (each of size 2000) and Convolutional
Neural Network (CNN) with 3 convolutional layers (kernel
size = 3 and stride = 1) and 2 linear layers (each of size 500)
were chosen. LeakyReLU activation was used along with Sig-
moid activation at the last layer. These deep learning models
are adept at fitting complex functions, rendering them suitable
as meta-learners. Due to the shared feature representation of
CNNs, they train faster than MLPs in many cases. LGBM
and XGB were trained with default parameters. The CNN
comprised three convolutional and two linear layers, while the
MLP featured three hidden layers. Evaluation metrics included
R2 Score [27] (Equ. 3), mean Absolute Percentage Error
(mAPE) (Equ. 4), and mean Absolute Error (mAE) (Equ. 5).
Each meta-model underwent training for 30 epochs with a
batch size of 256. The total training time was approximately
2-3 hours.

R2(y, ŷ) = 1−

n∑
i=1

(yi − ŷ)2

n∑
i=1

(yi − ȳ)2
(3)

mAPE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|
max(ϵ, |yi|)

(4)

mAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi| . (5)

B. Results and Discussion

Tables I, III display the performance of pre-trained (base-
line) models and II, IV show meta-models’ performance on
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the leakage datasets of 16nm and 7nm FinFET technologies
respectively. At 16nm node (Tables I, II), 2x1 multiplexer cell
showed a significant improvement where its mAPE reduced
from 17.44% to 4.61%, resulting in 73.5% improvement in
leakage estimation (% improvement is calculated using Equ.
6). Likewise, the best reduction in mAPE at the 7nm node (Ta-
bles III, IV) was observed for the NAND2 gate, from 17.02%
to 4.63% (around 73% improvement). The best improvement
is highlighted in these tables. The proposed MetaCirc approach
shows improvement in all the metrics - R2, mAPE, and
mAE across all the datasets in both the technology nodes,
demonstrating its efficiency. On average, mAPE is reduced by
4% in all the datasets, resulting in around 50% better leakage
estimation than the baseline models. Figures 2a and 2b illus-
trate a plot comparing the predictions of pre-trained and meta-
models against the ground truth for the 16nm and 7nm 2x1
multiplexer datasets, respectively. These graphs demonstrate
that the meta-models effectively align with the ground truth
distribution compared to the baseline models.

% improvement =
mAPEbase −mAPEmeta

mAPEbase
× 100 (6)

TABLE I: Pre-trained model performance for 16nm node

Standard Cell
Model Name and Metrics

LGBM XGB
R2 mAE mAPE (%) R2 mAE mAPE (%)

AND2 0.9660 9.8E-10 7.6581 0.9613 1.2E-09 10.0106
NAND2 0.9570 7.2E-10 10.5886 0.9510 7.3E-10 10.5633
NOR2 0.9863 2.2E-10 5.7239 0.9899 2.2E-10 5.7771
OR2 0.9904 4.1E-10 4.0500 0.9902 4.6E-10 4.5749

XNOR2 0.9904 1.5E-09 4.2091 0.9891 1.7E-09 4.7609
XOR2 0.9820 1.8E-09 5.3808 0.9866 1.8E-09 5.5119
AND3 0.9521 1.6E-09 8.2606 0.9681 1.6E-09 8.6951
AO12 0.9854 1.0E-09 4.3039 0.9909 1.1E-09 4.5665

FA 0.9776 3.4E-09 4.4699 0.9865 3.5E-09 4.7518
MUX21 0.8775 1.5E-07 17.4416 0.9076 1.4E-07 15.1702
NAND3 0.9486 8.2E-10 8.7507 0.9460 9.8E-10 10.8688
NOR3 0.9598 3.4E-10 8.5315 0.9479 2.9E-10 6.5984
OR3 0.9672 6.0E-10 4.9510 0.9815 6.6E-10 5.6982

TABLE II: Meta-model performance for 16nm node

Standard Cell
Model Name and Metrics

META CNN META MLP
R2 mAE mAPE (%) R2 mAE mAPE (%)

AND2 0.9949 4.6E-10 4.3341 0.9957 4.2E-10 3.9282
NAND2 0.9936 2.8E-10 4.9875 0.9957 2.3E-10 4.3823
NOR2 0.9956 1.5E-10 3.6429 0.9963 1.5E-10 3.4591
OR2 0.9944 3.2E-10 3.0125 0.9955 2.9E-10 2.8160

XNOR2 0.9938 1.3E-09 3.4939 0.9951 1.2E-09 3.3391
XOR2 0.9936 1.2E-09 3.6992 0.9942 1.1E-09 3.5571
AND3 0.9953 6.1E-10 3.4377 0.9955 5.7E-10 3.2287
AO12 0.9984 4.7E-10 1.9618 0.9985 4.5E-10 1.8637

FA 0.9973 1.7E-09 2.4567 0.9975 1.4E-09 2.1345
MUX21 0.9958 2.9E-08 4.8978 0.9948 3.2E-08 4.6161
NAND3 0.9964 2.7E-10 3.5893 0.9967 2.7E-10 3.4229
NOR3 0.9899 1.6E-10 3.4891 0.9907 1.4E-10 3.1270
OR3 0.9863 3.6E-10 2.5617 0.9943 3.0E-10 2.2991

The analysis above indicates that the MetaCirc algorithm
can bring predictions closer to the actual values. While it
is possible to fine-tune the baseline models to enhance their
performance, optimizing their hyperparameters demands sub-
stantial resources. In contrast, training meta-models on top
of the baseline models requires fewer resources and effort.
This approach offers a dual advantage as the meta-models
don’t directly predict values but instead learn to select the

TABLE III: Pre-trained model performance for 7nm node

Standard Cell
Model Name and Metrics

LGBM XGB
R2 mAE mAPE (%) R2 mAE mAPE (%)

AND2 0.9690 5.5E-10 7.4642 0.9635 6.2E-10 8.6824
NAND2 0.9625 4.4E-10 11.3121 0.9037 6.7E-10 17.0232
NOR2 0.9921 8.5E-11 3.3509 0.9925 9.2E-11 3.3160
OR2 0.9865 2.4E-10 3.9311 0.9871 2.7E-10 4.6385

XNOR2 0.9824 9.7E-10 4.2486 0.9887 1.0E-09 4.8047
XOR2 0.9796 8.9E-10 4.6036 0.9798 9.0E-10 4.5415
AND3 0.9547 9.4E-10 7.8928 0.9627 9.3E-10 8.1777
AO12 0.9791 6.5E-10 4.3837 0.9918 6.2E-10 4.6124

FA 0.9810 2.0E-09 4.7983 0.9853 2.0E-09 4.9518
MUX21 0.9356 9.0E-07 13.7656 0.9815 4.9E-07 8.6721
NAND3 0.9419 6.0E-10 9.8906 0.9597 5.3E-10 9.2580
NOR3 0.9652 1.3E-10 4.1652 0.9825 1.3E-10 3.8679
OR3 0.9737 3.4E-10 4.6873 0.9773 3.8E-10 5.5700

TABLE IV: Meta-model model performance for 7nm node

Standard Cell
Model Name and Metrics

META CNN META MLP
R2 mAE mAPE (%) R2 mAE mAPE (%)

AND2 0.9934 2.9E-10 4.5437 0.9953 2.5E-10 4.0210
NAND2 0.9958 1.5E-10 4.9010 0.9960 1.5E-10 4.6393
NOR2 0.9938 8.0E-11 2.2958 0.9937 8.0E-11 2.1151
OR2 0.9947 1.7E-10 2.7188 0.9948 1.7E-10 2.6202

XNOR2 0.9946 7.1E-10 3.4204 0.9945 6.8E-10 3.2476
XOR2 0.9928 6.0E-10 3.4036 0.9921 6.1E-10 3.3666
AND3 0.9952 3.5E-10 3.3690 0.9956 3.4E-10 3.2652
AO12 0.9979 3.1E-10 2.3123 0.9971 3.1E-10 2.2089

FA 0.9968 9.7E-10 2.5367 0.9976 8.4E-10 2.1837
MUX21 0.9978 1.6E-07 3.8445 0.9975 1.7E-07 3.7396
NAND3 0.9960 1.9E-10 3.8378 0.9952 1.8E-10 3.6328
NOR3 0.9900 9.2E-11 2.0271 0.9865 9.3E-11 1.8805
OR3 0.9902 1.9E-10 2.2212 0.9909 1.8E-10 2.1738

appropriate pre-trained models based on the input. This en-
ables the meta-models to generalize effectively to variations
and improve predictions on data they were not explicitly
trained on. In contrast, when hyper-parameter optimization is
applied to a model on a dataset, the parameter search space
expands exponentially with the number of features. Employing
a straightforward brute-force method significantly prolongs the
time required for fine-tuning models.

V. CONCLUSION & FUTURE SCOPE

We introduce an effective meta-learning strategy capable
of enhancing the performance of baseline models without the
need for hyperparameter optimization. Experimental results
conducted on both 16nm and 7nm technology nodes reveal
an average improvement of 50% and 48.68% in terms of
mAPE, respectively. The MetaCirc algorithm proposed in this
study can serve as a versatile tool for refining predictions
from pre-trained models without the necessity of fine-tuning
hyperparameters of the baseline models. This approach can
significantly reduce the complexity of simulations, as meta-
models exhibit the capability for few-shot learning, enabling
them to adapt to new data with a minimal number of samples.
In future research, we aim to extend this algorithm to develop
a comprehensive framework of meta-models that can leverage
prior experience to estimate leakage power for previously
unseen circuits.
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