
Recursive Subproduct Codes with Reed-Muller-like Structure

Aditya Siddheshwar, Lakshmi Prasad Natarajan, Prasad Krishnan

Abstract—We study a family of subcodes of the m-dimensional
product code C⊗m (‘subproduct codes’) that have a recursive
Plotkin-like structure, and which include Reed-Muller (RM)
codes and Dual Berman codes as special cases. We denote the
codes in this family as C⊗[r,m], where 0 ≤ r ≤ m is the ‘order’
of the code. These codes allow a ‘projection’ operation that
can be exploited in iterative decoding, viz., the sum of two
carefully chosen subvectors of any codeword in C⊗[r,m] belongs to
C⊗[r−1,m−1]. Recursive subproduct codes provide a wide range of
rates and block lengths compared to RM codes while possessing
several of their structural properties, such as the Plotkin-like
design, the projection property, and fast ML decoding of first-
order codes. Our simulation results for first-order and second-
order codes, that are based on a belief propagation decoder and a
local graph search algorithm, show instances of subproduct codes
that perform either better than or within 0.5 dB of comparable
RM codes and CRC-aided Polar codes.

The extended version of this paper containing the proofs of
all claims is available in [1].

I. INTRODUCTION

The product construction [2] is a well-known technique
to obtain new codes from existing codes. When used m
times repeatedly on an [n, k, d] code C we obtain an m-
fold product code C⊗m with parameters [nm, km, dm]. The
parity-check constraints of product codes can be expressed
through a factor graph with generalized check nodes. Hence,
it is natural to use iterative techniques to decode product
codes [3], [4]. The product construction has been a popular
technique for designing coding schemes for the additive white
Gaussian noise (AWGN) channel; examples of some recent
work in this direction include [5]–[7]. Several variants of the
product construction are known that have yielded codes with
good error correction properties, such as subcodes of prod-
uct codes (‘subproduct codes’) that satisfy certain symmetry
properties [4], [8], [9], and constructions using ideas from
convolutional codes [10], [11].

The objective of this work is to use the product construction
to identify codes that satisfy a projection property: the sum
of two carefully chosen subvectors of any codeword lies in
another code for which a fast decoder is available. In such
cases, the latter code can be used as a generalized check
node in the factor graph for iterative decoding. Reed-Muller

Aditya Siddheshwar and Prasad Krishnan are with the Signal
Processing and Communications Research Center, International
Institute of Information Technology, Hyderabad 500032, India (email:
aditya.siddheshwar@research.iiit.ac.in, prasad.krishnan@iiit.ac.in).

Lakshmi Prasad Natarajan is with the Department of Electrical Engineering,
Indian Institute of Technology Hyderabad, Sangareddy 502284, India (email:
lakshminatarajan@iith.ac.in).

This work was supported by the Qualcomm 6G University Research India
Program.

(RM) codes [12], [13] enjoy such a projection property, and
this was used to design the recursive projection aggregation
(RPA) decoder [14] and a related belief propagation (BP)
decoder [15] that use the fact that RM(1,m) codes have a
fast ML decoder [16], [17]. A similar decoding technique for
extended cyclic codes was proposed in [18].

Starting from any [n, k ≥ 2, d] code C which contains the
all-one codeword 1, we identify a family of subproduct codes
{1,000} = C⊗[0,m] ⊂ C⊗[1,m] ⊂ · · · ⊂ C⊗[m,m] = C⊗m. The
parameters of C⊗[r,m], where the ‘order’ r ∈ {0, 1, . . . ,m},
are

[
nm,

∑r
l=0

(
m
l

)
(k − 1)l, d rn(m−r)

]
. These codes include

the RM codes and Dual Berman codes [19]–[21] as special
cases, corresponding to, C = F

2
2 and C = F

n
2 , n ≥ 3,

respectively. These subproduct codes satisfy a recursive
structure which generalizes the Plotkin construction of RM
codes. As with RM codes, a projection operation can be
applied on C⊗[r,m] to yield C⊗[r−1,m−1], and further, the
code C⊗[1,m] can be ML decoded efficiently.

We describe the construction and basic properties of the
recursive subproduct codes C⊗[r,m], including the identifica-
tion of their minimum weight codewords, in Section II. A
fast ML decoder and a soft-output max-log-MAP decoder for
the first-order codes C⊗[1,m] is described in Section III. In
Section IV we introduce the projection operation, describe a
BP decoder that uses projections, and an improvement using
a local graph search algorithm [22] for second-order codes
C⊗[2,m]. We present some simulation results for first- and
second-order codes in Section V to show that it is possible
to design subproduct codes that perform either better than or
within 0.5 dB of comparable RM codes and CRC-aided Polar
codes.

Recursive subproduct codes provide a wider range of rates
and block lengths compared to RM codes while possessing
several of their structural properties. We believe that these
codes warrant further investigation, such as in the context of
low-capacity channels [23], designing more efficient decoders,
improving the performance using high-rate outer codes, and
application in private information retrieval [24], [25].

Notation: The symbol ⊗ denotes the Kronecker product.
For ℓ > 0, let JℓK = {0, 1, . . . , ℓ − 1}. We use capital letters
to denote matrices (such as G), and small bold letters to
denote row vectors (such as ggg). For two vectors aaa,bbb, their
concatenation is denoted by (aaa |bbb). The dimension of a code C
is dim(C) and its minimum distance is dmin(C). The Hamming
weight of a vector aaa is denoted by wH(aaa), and support by
supp(aaa). We use span to denote the span of a collection of
vectors.

II. RECURSIVE SUBPRODUCT CODES

Denote the all-one row vector in Fn
2 by 1n. Let C be any

[n, k ≥ 2, d] binary linear code with 1n ∈ C. Consider any
basis {ggg0, ggg1, . . . , gggk−1} for C such that ggg0 = 1n. For every
jjj = (j0, . . . , jm−1) ∈ JkKm, define the vector bbbjjj ∈ F

nm

2

as bbbjjj = gggj0 ⊗ gggj1 ⊗ · · · ⊗ gggjm−1 . Note that bbbjjj , jjj ∈ JkKm,
are precisely the rows of G ⊗ · · · ⊗ G = G⊗m, where
G = [gggT0 , · · · , gggTk−1]

T is a generator matrix of C. Since G,
and hence G⊗m, have linearly independent rows, we see that
{bbbjjj : jjj ∈ JkKm} is linearly independent. We define

C⊗[r,m] ≜ span ({bbbjjj : jjj ∈ JkKm, wH(jjj) ≤ r})

for 0 ≤ r ≤ m. Since G⊗m is a generator matrix of the m-
fold product code C⊗m, it is clear that C⊗[r,m] ⊆ C⊗m. Also,
dim(C⊗[r,m]) = |{jjj : wH(jjj) ≤ r}| =

∑r
l=0(k−1)l

(
m
l

)
. It can

be shown that the code C⊗[r,m] is independent of the choice
of ggg1, . . . , gggk−1 as long as {1n, ggg1, . . . , gggk−1} is a basis of C,
see [1]. We will refer to r as the ‘order’ of the code.

Remark 1: Consider C = F
2
2, i.e., n = k = 2, with ggg0 =

(1, 1), ggg1 = (0, 1). Then bbbjjj : jjj ∈ {0, 1}m, are the rows of
the 2m × 2m matrix G⊗m where G = [gggT0 , ggg

T
1]

T . Note that
wH(bbbjjj) =

∏
ℓ∈JmK wH(gggjℓ) = 2(m−wH(jjj)). Thus, C⊗[r,m]

is the span of all the rows of G⊗m with weight at least
2(m−r), which is a well known construction of RM(r,m),
i.e., C⊗[r,m] = RM(r,m) when C = F

2
2. Further, if C = F

n
2 ,

n ≥ 3, then C⊗[r,m] is the Dual Berman code [19]–[21] of
order r and length nm, see [1]. □

Lemma 1: (Recursive Plotkin-like structure of C⊗[r,m])

C⊗[r,m] =
{ k−1∑

i=0

dddi ⊗ gggi : ddd0 ∈ C⊗[r,m−1],

ddd1, . . . , dddk−1 ∈ C⊗[r−1,m−1]
}
. (1)

Further, for each codeword in C⊗[r,m], there exists a unique
choice of dddi : i ∈ JkK in the decomposition in (1).

Proof Idea: Let Gr,m denote the generator matrix of C⊗[r,m]

composed of rows bbbjjj : jjj ∈ JkKm, wH(jjj) ≤ r. Using the
Kronecker product structure of bbbjjj it can be seen that

Gr,m =

[
Gr,m−1 ⊗ 1n

Gr−1,m−1 ⊗Gsub

]
(2)

up to a reordering of rows, where Gsub = [gggT1 , . . . , ggg
T
k−1]

T .
Considering the row span of (2) proves the lemma [1].

Remark 2: For RM codes, i.e., C = F
2
2, ggg0 = (1, 1), ggg1 =

(0, 1), the decomposition (1) is ccc = ddd0 ⊗ (1, 1) + ddd1 ⊗ (0, 1).
Reordering the symbols in ccc we obtain (1, 1)⊗ ddd0 + (0, 1)⊗
ddd1 = (ddd0, ddd0 + ddd1), the (u|u+ v) Plotkin construction. □

We now present the characterization of the minimum
distance and the minimum weight codewords of C⊗[r,m].
The derivation of these results is based on the following
observation. We express ccc ∈ C⊗[r,m] as the concatenation
of nm−1 vectors of length-n each, ccc = (ccc1|ccc2| . . . |cccnm−1).
From (1) we have ccc =

∑k−1
i=0 dddi ⊗ gggi, for some unique

codewords ddd0 = (d0,1, . . . , d0,nm−1) ∈ C⊗[r,m−1], and dddi =

(di,1, . . . , di,nm−1) ∈ C⊗[r−1,m−1], i = 1, . . . , k − 1. Observe
that, for any position t ∈ {1, . . . , nm−1}, we have

ccct =

k−1∑
i=0

di,t · gggi ∈ C.

Since {gggi : i ∈ JkK} is a basis of C, we see that ccccccccct ∈ C \ {000}
if at least one of the symbols di,t : i ∈ JkK is non-zero. Using
this observation, and due to the fact wH(ggg0) = wH(1n) = n,
we immediately obtain

wH(ccc) =
∑nm−1

t=1 wH(ccct) ≥ |supp(ddd0) \ S|n + |S| d, (3)

where d = dmin(C) and S = ∪k−1
i=1 supp(dddi).

Lemma 2: The minimum distance of C⊗[r,m] is drnm−r.
Proof Idea: To prove dmin ≥ drnm−r, apply induction on m

using (3) and the known boundary cases dmin(C
⊗[0,m]) = nm

(repetition code) and dmin(C
⊗[m,m]) = dm (product code).

For the induction step, prove for cases S = ∅ and S ̸= ∅. We
then prove dmin ≤ drnm−r, again by induction, by identifying
codewords in C⊗[r,m] of this weight using (1).

The following result, whose proof is based on (3), provides
a recursive characterization of minimum weight codewords of
C⊗[r,m]. For any linear code C let Amin(C) be the set of its
minimum weight (non-zero) codewords.

Claim 1: Amin

(
C⊗[r,m]

)
= A1 ∪ A2 ∪ A3, where

A1 = {d̃dd⊗ ggg : ∀d̃dd ∈ Amin(C
⊗[r−1,m−1]),∀ggg ∈ Amin(C)},

A2 = {ddd⊗ 1n + d̃dd⊗ g̃gg : ∀d̃dd ∈ Amin(C
⊗[r−1,m−1]),

∀ddd ∈ C⊗[r,m−1] s.t ∅ ≠ supp(ddd) ⊊ supp(d̃dd),

∀g̃gg ∈ Amin(C) s.t. 1n + g̃gg ∈ Amin(C)}, and

A3 = {ddd⊗ 1n : ∀ddd ∈ Amin(C
⊗[r,m−1])}.

Note that A2 ̸= ∅ only if there exists a g̃gg ∈ Amin(C) such
that 1n + g̃gg ∈ Amin(C), i.e., n = 2dmin(C) = 2d. If n ̸= 2d,
then Amin(C

⊗[r,m]) = A1 ∪ A3. We now explicitly identify
Amin(C

⊗[r,m]) when n ̸= 2d.
Lemma 3: Amin(C

⊗[r,m]) =
⋃

J⊆JmK:|J|=r Amin(C
⊗[r,m], J)

if n ̸= 2dmin(C), where Amin(C
⊗[r,m], J) is defined as ⊗

j∈JmK

hhhj : hhhj ∈ Amin(C),∀j ∈ J, and hhhj = 1n,∀j /∈ J

 .

Proof Idea: We use Amin(C
⊗[r,m]) = A1 ∪ A3 inductively

together with the known results for the boundary cases, viz.,
repetition code (r = 0) and product code (r = m) [26].

In Section IV-C we use a local graph search decoder [22] to
improve the performance of the BP decoder for C⊗[2,m]. The
complexity of this search depends on |Amin(C

⊗[2,m])|. From
Lemma 3, if n ̸= 2d, this equals

(
m
2

)
|Amin(C)|2 = O

(
log2 N

)
as a function of the length N = nm. The graph used in
this search decoder for C⊗[2,m] is a connected graph when
span(Amin(C

⊗[2,m])) = C⊗[2,m] [22], which is guaranteed by
Claim 2: If n ̸= 2dmin(C) and C = span(Amin(C)), then for

every r ∈ {0, . . . ,m}, C⊗[r,m] = span(Amin(C
⊗[r,m])).

III. FAST ML DECODING OF FIRST-ORDER CODES

We consider maximum-likelihood (ML) decoding of the
first-order codes C⊗[1,m] in a binary-input memoryless channel
W (y|x). The naive ML decoder for C⊗[1,m] has complexity
order N 2dim(C

⊗[1,m]) = N 21+m(k−1) = 2N1+α, where N =
nm is the block length of the code and α = (k − 1)/log2 n.
In contrast, using ideas similar to the fast ML decoder
for RM(1,m) [16], [17], we use the recursive structure of
the code to implement the ML decoder with complexity
O(max{N,Nα}) when α ̸= 1 and complexity O(N logN)
if α = 1. We also propose an efficient soft-output max-log-
MAP decoder with the same complexity order as the fast ML
decoder.

Let yyy = (y1, . . . , yN) be the channel output and ℓℓℓ =
(ℓ1, . . . , ℓN) denote the vector of channel log likelihood ra-
tios (LLRs), where ℓi = loge (W (yi|0)/W (yi|1)). For any
ccc = (c1, . . . , cN) ∈ C⊗[1,m], let us denote the bipolar represen-
tation of the bit ci as cbi = (−1)ci . Similarly, for a codeword ccc
define its bipolar representation cccb =

(
cb1, . . . , c

b
N

)
∈ {±1}N .

Note that the ML decoder chooses the codeword whose bipolar
representation cccb has the largest correlation ⟨cccb, ℓℓℓ⟩ =

∑
i c

b
iℓi

with the LLR vector ℓℓℓ.

A. Efficient ML Decoding
Let Csub = span(ggg1, . . . , gggk−1), a subcode of C. Using

Lemma 1 and the fact that C⊗[0,m−1] is the repetition code
of length nm−1, we observe that C⊗[1,m] equals{

ddd⊗ 1n + 1n(m−1) ⊗ aaa : ddd ∈ C⊗[1,m−1], aaa ∈ Csub

}
, (4)

where 1n(m−1) is the all-one vector of length nm−1. For two
vectors uuu and vvv of same length let uuu⊙vvv denote the component-
wise product of the entries of uuu and vvv. From (4), we deduce
that for all ccc ∈ C⊗[1,m], cccb =

(
dddb ⊗ 1n

)
⊙

(
1n(m−1) ⊗ aaab

)
,

where ddd ∈ C⊗[1,m−1], aaa ∈ Csub. Using ddd = (d1, . . . , dnm−1)
and aaa = (a1, . . . , an) to denote the components of ddd and aaa,

cccb = dddb ⊗ aaab =
(
db1aaa

b, db2aaa
b, . . . , dbn(m−1)aaa

b
)
. (5)

Let us similarly split the nm-length LLR vector ℓℓℓ into nm−1

subvectors of length n each, ℓℓℓ = (ℓℓℓ1 | · · · |ℓℓℓn(m−1)), where
ℓℓℓj = (ℓj,1, . . . , ℓj,n) for j = 1, . . . , n(m−1). Then

⟨cccb, ℓℓℓ⟩ =
nm−1∑
j=1

n∑
i=1

dbja
b
iℓj,i =

nm−1∑
j=1

dbj

n∑
i=1

abiℓj,i = ⟨dddb, ℓℓℓ(aaa)⟩,

where ⟨dddb, ℓℓℓ(aaa)⟩ is the correlation between the two n(m−1)-
length vectors ℓℓℓ(aaa) ≜

(∑n
i=1 a

b
iℓ1,i, . . . ,

∑n
i=1 a

b
iℓnm−1,i

)
and dddb. While ccc ∈ C⊗[1,m], we note that ddd ∈ C⊗[1,m−1]. This
relation allows us to implement the ML decoder for C⊗[1,m]

recursively by calling the ML decoder for C⊗[1,m−1]. For
each of the 2(k−1) choices of aaa ∈ Csub we use the ML
decoder for C⊗[1,m−1] to find the codeword dddb that maximizes
⟨dddb, ℓℓℓ(aaa)⟩. Then, among all these 2(k−1) choices of (dddb, aaa) we
pick the one with the maximum correlation. For m = 1 we use
the brute-force decoder with complexity n2k. This recursive
decoder has complexity order max{N,Nα} if α ̸= 1, and
complexity order N logN if α = 1, see [1].

B. Efficient Max-Log-MAP Decoding

An efficient implementation of the optimal MAP (maximum
a posteriori probability) decoder for RM(1,m) has been
described in [17], which can be extended to C⊗[1,m]. However,
this decoder is not numerically stable since it operates in the
probability domain (not log domain), and it uses expensive
functions log and exp. An approximation to the max-log-MAP
decoder for RM(1,m) was proposed in [6] which operates
completely in the log domain. In comparison we provide a
low-complexity recursive algorithm for exact max-log-MAP
decoding for C⊗[1,m] (which applies to RM(1,m) also).

Note that (5) partitions cccb into nm−1 subvectors each of
length n. The ith symbol in the jth subvector is dbja

b
i , where

i = 1, . . . , n and j = 1, . . . , nm−1. We have thus indexed the
code bits in ccc using (j, i). The max-log-MAP decoder outputs

Lj,i = loge
(

max
ccc:cbj,i=+1

P[ccc|yyy]
)
− loge

(
max

ccc:cbj,i=−1
P[ccc|yyy]

)
for all (j, i). Here, Lj,i is the max-log approxima-
tion of the true log APP (a posteriori probability) ratio
loge

(
P[cbj,i = +1|yyy] /P[cbj,i = −1|yyy]

)
. Following a procedure

similar to [27, equation (63)] it is rather straightforward to
show that Lj,i =

(
L
(+1)
j,i − L

(−1)
j,i

)
/2, where

L
(+1)
j,i = max

ccc:cbj,i=+1
⟨cccb, ℓℓℓ⟩ and L

(−1)
j,i = max

ccc:cbj,i=−1
⟨cccb, ℓℓℓ⟩.

Using (5), and the facts ⟨cccb, ℓℓℓ⟩ = ⟨dddb, ℓℓℓ(aaa)⟩, cbj,i = dbj a
b
i , it is

easy to observe that

L
(s)
j,i = max

aaa∈Csub

{
max

ddd∈C⊗[1,m−1]:db
j=sab

i

⟨dddb, ℓℓℓ(aaa)⟩

}
for s ∈ {±1}.

Observe that the inner maximization is a computation
that would be used to perform max-log-MAP decod-
ing of the code C⊗[1,m−1] where the channel LLRs are
ℓℓℓ(aaa). For s ∈ {±1}, by using the notation L

(s)
j (aaa) =

max
{
⟨dddb, ℓℓℓ(aaa)⟩ : ddd ∈ C⊗[1,m−1], dbj = s

}
, we see that

L
(+1)
j,i = max

aaa∈Csub

L
(ab

i)
j (aaa), L

(−1)
j,i = max

aaa∈Csub

L
(−ab

i)
j (aaa). (6)

In our recursive algorithm, we use a procedure for the code
C⊗[1,m−1] to compute L

(s)
j (aaa), s = ±1, for each aaa ∈ Csub. We

then use these values in (6) to compute the L(+1)
j,i and L

(−1)
j,i for

C⊗[1,m], and then finally, Lj,i as half their difference. For m =

1, we use a brute-force approach to compute L
(+1)
j,i , L

(−1)
j,i .

This max-log-MAP decoder has the same complexity order as
the recursive ML decoder in Section III-A, see [1].

IV. DECODING SECOND-ORDER CODES

We introduce a notation for indexing the code bits using
JnKm = {0, . . . , n−1}m as well as for puncturing codewords,
and then we present the projection operation. Borrowing ideas
from the literature on decoding RM codes [14], [15], [28],
[29] we propose a BP decoder for C⊗[2,m] that exploits this
projection. We then use a local graph search algorithm [22] to
improve the performance of the BP decoder.

A. Projection Operation

To create a new indexing we simply replace the natural
index i ∈ {1, . . . , nm} with the coefficients i0, . . . , im−1 of
the base-n expansion of i − 1 =

∑m−1
l=0 iln

m−1−l, where
iii = (i0, . . . , im−1) ∈ JnKm. Recall that the jjjth basis vector is
bbbjjj = gggj0 ⊗ · · · ⊗ gggjm−1

, jjj ∈ JkKm, wH(jjj) ≤ r. Representing
the entries of gggjℓ as (gjℓ,0, . . . , gjℓ,n−1) we observe that the iiith

entry of bbbjjj is bjjj,iii = gj0,i0 ×· · ·×gjm−1,im−1 =
∏

ℓ∈JmK gjℓ,iℓ .
If ccc ∈ C⊗[r,m] then there exist coefficients ajjj ∈ F2 such that
ccc =

∑
jjj:wH(jjj)≤r ajjjbbbjjj . Thus, for each iii ∈ JnKm, the iiith entry

of ccc is

ciii =
∑

jjj∈JkKm:wH(jjj)≤r

ajjjbjjj,iii =
∑

jjj∈JkKm:wH(jjj)≤r

ajjj
∏

ℓ∈JmK

gjℓ,iℓ . (7)

We intend to puncture a codeword onto the collection of
indices iii where some of the coordinates of iii are frozen. Let
F ⊂ JmK, with |F| = f , and iiiF = (iℓ : ℓ ∈ F) be the
corresponding subvector of iii. Let uuu ∈ JnKf denote the frozen
values of iiiF. Then H = {iii ∈ JnKm : iiiF = uuu} is the collection
of indices where iiiF = uuu. We denote the vector obtained by
puncturing a codeword ccc by only retaining the indices in H

as PH(ccc) = (ciii : iii ∈ H). The length of PH(ccc) is |H| =
n(m−f). This punctured vector can be indexed using JnK(m−f)

as follows. For any iii′ = (i′0, . . . , i
′
m−f−1) ∈ JnK(m−f), the iii′th

entry of PH(ccc) is equal to the iiith entry of ccc where iii is defined
as iiiF = uuu and iiiJmK\F = iii′.

In order to apply projection on C⊗[r,m] we choose F,uuu, ũ̃ũu as
follows, F ⊂ JmK, |F| = f , uuu, ũ̃ũu ∈ JnK(m−f) with uuu ̸= ũ̃ũu. For
any f = 1, . . . ,m−r+1, there are

(
m
f

)(
nf

2

)
choices of F,uuu, ũ̃ũu,

and each such choice provides a projection operation. Define
H = {iii ∈ JnKm : iiiF = uuu} and H̃ = {iii ∈ JnKm : iiiF = ũ̃ũu} for
puncturing a codeword ccc to the indices H and H̃.

Lemma 4: (Projection) For every ccc ∈ C⊗[r,m],

PH(ccc) + P
H̃
(ccc) ∈ C⊗[r−1,m−f].

Proof Idea: For iii′ ∈ JnK(m−f) we use the expansion (7) to
express the iii′th entry of PH(ccc) +P

H̃
(ccc) as a sum indexed by

jjj ∈ JkKm, wH(jjj) ≤ r. We then observe that if jjj is such that
jℓ = 0 for all ℓ ∈ F then the corresponding term in the sum is
zero (using the fact gggjℓ = 1n if jℓ = 0). The remaining terms
correspond to the choices of jjj such that wH ((jℓ : ℓ /∈ F)) ≤
wH(jjj)−1 ≤ r−1. This sum can be reduced to a form similar
to (7) for the code C⊗[r−1,m−f] (instead of C⊗[r,m]). See [1]
for full proof.

RM codes enjoy a richer set of projection operations than
Lemma 4 which include the projections described in Lemma 4
as a strict subset, see [14, Lemma 1].

B. Belief Propagation Decoding of Second-Order Codes

We use an approach identical to the BP decoder proposed
in [15] for RM codes to decode C⊗[2,m]. Our factor graph uses
two types of generalized check nodes. The first arise from the
projection operations from Lemma 4 using f = 1. The second
arise from the condition that every ccc ∈ C⊗[2,m] belongs to the
product code C⊗m (these are useful only when C is non-trivial,

Fig. 1. Factor graph for BP decoding of C⊗[2,m]. Numbers next to the dashed
arrows represent the sequence of messages in each iteration. Empty circles
are V, empty squares are C, filled circles are Vh, filled squares are Cg.

i.e., k < n). These constraints can be stated as follows: for
any F ⊂ JmK with |F| = m − 1 and any uuu ∈ JnKm−1, we
have PH(ccc) ∈ C, where H = {iii : iiiF = uuu}. The factor graph
contains the following nodes (see Fig. 1):

(i) The set V of nm variable nodes denoting the code bits.
(ii) Set C of check nodes that denote the addition of code bits

in the projection operation. Each such node is connected
to two variable nodes and one hidden variable node.

(iii) Hidden variable nodes Vh denoting the (projected) code
bits of C⊗[1,m−1].

(iv) Two types of generalized check nodes Cg: nodes of type
C⊗[1,m−1] are connected to nm−1 hidden variable nodes,
and nodes of type C are connected to n variable nodes.

We use a weighted variable node update rule at nodes v ∈ V

λ(t)
v→c = ℓv + γ

∑
c′∈∂v∩C:c′ ̸=c

λ
(t−1)
c′→v + γg

∑
c′∈∂v∩Cg:c

′ ̸=c

λ
(t−1)
c′→v

for all c ∈ ∂v, where λv→c, λc→v are messages from and to v,
respectively, superscript is the iteration index, ∂ represents the
set of neighbors of a node, γ, γg > 0 represent weights, and
ℓv is the channel LLR of code bit v. Generalized check nodes
perform max-log-MAP decoding to output the extrinsic LLRs
(fast decoder for C⊗[1,m−1], brute-force for C). We use the
standard BP rule at other nodes. We run up to Tmax iterations
or till convergence to a codeword, whichever is earlier. The
complexity order of each iteration is N log2 N for α = 1, and
max{N,Nα} logN otherwise [1].

C. Improving the Performance via Local Graph Search

Let G be a graph whose vertex set is C⊗[2,m]. Two
codewords are neighbors if the distance between them is
dmin(C

⊗[2,m]). As proposed in [22], we trace a path in G

of length PLGS as follows: for p = 1, . . . , PLGS we choose
the pth codeword in the path ccc(p) as the codeword with the
largest likelihood among all neighbors of ccc(p−1) that do not
already lie on the path traced so far. If no such neighbor is
found, we terminate. We set ccc(0) as the BP decoder’s output.
The output of the algorithm is the most likely codeword
among all the nodes in the traced path. If n ̸= 2dmin(C),
the degree of each node in G is small, in the order of

Fig. 2. Performance of first-order codes under ML decoding. ‘DB’ denotes
Dual Berman codes, and H is the [7, 4, 3] Hamming code.

Fig. 3. Performance of codes with block lengths close to 250. Here, ‘DB’
denotes the Dual Berman code, and ‘CA-DB’ is its CRC-aided version.

log2 N . In this case, the complexity order of this algorithm
is PLGS log

2 N max
{
N, log2 N logPLGS

}
, see [1].

In general, we use this algorithm only if the output cccBP of
the BP decoder belongs to C⊗[2,m]. For Dual Berman codes
(C = F

n
2), we use ccc(0) = D(cccBP) for any cccBP ∈ F

nm

2 where
D : Fnm

2 → C⊗[2,m] is a low-complexity decoder from [21].

V. SIMULATION RESULTS

We present the codeword error rate (CER) of a few recursive
subproduct codes C⊗[r,m] with r = 1, 2 in the binary-input
AWGN channel benchmarked against RM(1,m) (fast ML
decoding), RM(2,m) (RPA-list decoding [14], list size 16,
with near-ML performance) and CRC-aided Polar (CA-Polar)
codes (successive cancellation list (SCL) decoding, list size
32). We used the python library [30], [31] (8-bit CRC) and
the Matlab library [32] (5G NR uplink codes with 11-bit CRC)
for CA-Polar codes. In all presented results we observe that the
CER of the recursive subproduct codes are either better than
or within 0.5 dB of the performances of RM and CA-Polar
codes.

Fig. 2 compares first-order codes under ML decoding. Here
‘DB’ denotes the two Dual Berman codes, viz., C⊗[1,m] with
C = F

3
2 and m = 4, 7. The symbol H (for the code H⊗[1,4])

denotes the [7, 4, 3] Hamming code. The superior performance
of the subproduct codes over RM codes could be because of
the small number of minimum weight codewords (O(logN)
for these subproduct codes, see Lemma 3, versus O(N) for
RM(1,m)).

Fig. 3 compares the [243, 51, 27] Dual Berman code C⊗[2,5],
where C = F

3
2, with RM(2, 8) and the CA-Polar code sim-

ulated using [30]. The rightmost curve is C⊗[2,m] with BP
decoding (Tmax = 5, γ = 0.12; there are no generalized check
nodes of type C in the factor graph). The improvement
obtained via the local graph search (‘BP+LGS’) is also shown
(PLGS = 512). We strengthen this code using a 4-bit CRC
(polynomial x4+x+1) at the cost of a slight reduction in rate.
We use the same ‘BP+LGS’ decoder as before with two minor
modifications while determining the graph search output: we

Fig. 4. Codes with rates close to 0.085. Here DB denotes the [9, 5, 3] Dual
Berman code.

consider only those codewords in the traced path that satisfy
the CRC, and we use PLGS = 213. We also show the ML lower
bound [14], [33] of this CRC-aided Dual Berman (CA-DB)
code. Observe that the CA-DB code has a lower CER than
RM(2, 8) (however, please note that these two codes have
different rates).

Fig. 4 compares codes with rates close to 0.085. The second-
order RM code of length 512 and the 5G NR CA-Polar code of
length 729 and dimension 61 (this length is attained via rate-
matching in 5G NR) are used as benchmarks. The recursive
subproduct code presented in this figure is the [729, 61, 81]

code C⊗[2,3], where C =
(
F
3
2

)⊗[1,2]
is the [9, 5, 3] Dual

Berman code. BP decoding (using γ = 0.0175, γg = 0.3,
Tmax = 200) with local graph search decoding (PLGS = 213)
was used. Its performance is about 0.5 dB away from that of
the RM code when the CER is 10−3. A lower bound on the
ML decoding performance of C⊗[2,3] is also shown.

Please see [1] for a simulation result showing the CER of
H⊗[2,3], H = [7, 4, 3], against the 5G NR CA-Polar code.

REFERENCES

[1] A. Siddheshwar, L. P. Natarajan, and P. Krishnan, “Recursive
subproduct codes with Reed-Muller-like structure,” CoRR, 2024.
[Online]. Available: https://arxiv.org/abs/2401.15678

[2] P. Elias, “Error-free coding,” Transactions of the IRE Professional Group
on Information Theory, vol. 4, no. 4, pp. 29–37, 1954.

[3] R. Tanner, “A recursive approach to low complexity codes,” IEEE Trans.
Inf. Theory, vol. 27, no. 5, pp. 533–547, 1981.

[4] J. Justesen, “Performance of product codes and related structures with
iterated decoding,” IEEE Transactions on Communications, vol. 59,
no. 2, pp. 407–415, 2011.

[5] M. C. Coşkun, T. Jerkovits, and G. Liva, “Successive cancellation list
decoding of product codes with Reed-Muller component codes,” IEEE
Commun. Lett., vol. 23, no. 11, pp. 1972–1976, 2019.

[6] M. V. Jamali, M. Fereydounian, H. Mahdavifar, and H. Hassani, “Low-
complexity decoding of a class of Reed-Muller subcodes for low-
capacity channels,” in ICC 2022 - IEEE International Conference on
Communications, 2022, pp. 123–128.

[7] M. C. Coşkun, G. Liva, A. Graell i Amat, M. Lentmaier, and H. D.
Pfister, “Successive cancellation decoding of single parity-check product
codes: Analysis and improved decoding,” IEEE Trans. Inf. Theory,
vol. 69, no. 2, pp. 823–841, 2023.

[8] T. Mittelholzer, T. Parnell, N. Papandreou, and H. Pozidis, “Symmetry-
based subproduct codes,” in 2015 IEEE International Symposium on
Information Theory (ISIT), 2015, pp. 251–255.

[9] H. D. Pfister, S. K. Emmadi, and K. Narayanan, “Symmetric product
codes,” in 2015 Information Theory and Applications Workshop (ITA),
2015, pp. 282–290.

[10] A. J. Feltstrom, D. Truhachev, M. Lentmaier, and K. S. Zigangirov,
“Braided block codes,” IEEE Trans. Inf. Theory, vol. 55, no. 6, pp.
2640–2658, 2009.

[11] B. P. Smith, A. Farhood, A. Hunt, F. R. Kschischang, and J. Lodge,
“Staircase codes: FEC for 100 Gb/s OTN,” Journal of Lightwave
Technology, vol. 30, no. 1, pp. 110–117, 2012.

[12] D. E. Muller, “Application of boolean algebra to switching circuit design
and to error detection,” Transactions of the I.R.E. Professional Group
on Electronic Computers, vol. EC-3, no. 3, pp. 6–12, 1954.

[13] I. Reed, “A class of multiple-error-correcting codes and the decoding
scheme,” Transactions of the IRE Professional Group on Information
Theory, vol. 4, no. 4, pp. 38–49, 1954.

[14] M. Ye and E. Abbe, “Recursive projection-aggregation decoding of
Reed-Muller codes,” IEEE Trans. Inf. Theory, vol. 66, no. 8, pp. 4948–
4965, 2020.

[15] M. Lian, C. Häger, and H. D. Pfister, “Decoding Reed–Muller codes us-
ing redundant code constraints,” in 2020 IEEE International Symposium
on Information Theory (ISIT), 2020, pp. 42–47.

[16] Y. Be’ery and J. Snyders, “Optimal soft decision block decoders based
on fast Hadamard transform,” IEEE Trans. Inf. Theory, vol. 32, no. 3,
pp. 355–364, 1986.

[17] A. Ashikhmin and S. Litsyn, “Simple MAP decoding of first-order Reed-
Muller and Hamming codes,” IEEE Trans. Inf. Theory, vol. 50, no. 8,
pp. 1812–1818, 2004.

[18] B. Zhang and Q. Huang, “Derivative descendants and ascendants of
binary cyclic codes, and derivative decoding,” in 2022 IEEE Globecom
Workshops (GC Wkshps), 2022, pp. 535–540.

[19] T. Blackmore and G. Norton, “On a family of abelian codes and their
state complexities,” IEEE Trans. Inf. Theory, vol. 47, no. 1, pp. 355–361,
2001.

[20] S. Berman, “Semisimple cyclic and Abelian codes. II,” Cybernetics,
vol. 3, no. 3, pp. 17–23, 1967.

[21] L. P. Natarajan and P. Krishnan, “Berman codes: A generalization of
Reed–Muller codes that achieve BEC capacity,” IEEE Trans. Inf. Theory,
vol. 69, no. 11, pp. 6956–6980, 2023.

[22] M. Kamenev, “On decoding of Reed-Muller codes using a local graph
search,” IEEE Trans. Commun., vol. 70, no. 2, pp. 739–748, 2022.

[23] M. Fereydounian, H. Hassani, M. V. Jamali, and H. Mahdavifar,
“Channel coding at low capacity,” IEEE Journal on Selected Areas in
Information Theory, vol. 4, pp. 351–362, 2023.

[24] R. Freij-Hollanti, O. W. Gnilke, C. Hollanti, A.-L. Horlemann-
Trautmann, D. Karpuk, and I. Kubjas, “t-Private information retrieval
schemes using transitive codes,” IEEE Trans. Inf. Theory, vol. 65, no. 4,
pp. 2107–2118, 2019.

[25] S. Kale, K. Agarwal, and P. Krishnan, “t-PIR schemes with flexible pa-
rameters via star products of Berman codes,” in 2023 IEEE International
Symposium on Information Theory (ISIT), 2023, pp. 1348–1353.

[26] R. Miller, “Number of minimum-weight code words in a product
code,” Electronics Letters, vol. 14, pp. 642–643(1), September 1978.
[Online]. Available: https://digital-library.theiet.org/content/journals/10.
1049/el_19780431

[27] J. Hagenauer, E. Offer, and L. Papke, “Iterative decoding of binary block
and convolutional codes,” IEEE Trans. Inf. Theory, vol. 42, no. 2, pp.
429–445, 1996.

[28] V. M. Sidel’nikov and A. Pershakov, “Decoding of Reed-Muller codes
with a large number of errors,” Problemy Peredachi Informatsii, vol. 28,
no. 3, pp. 80–94, 1992.

[29] B. Sakkour, “Decoding of second order Reed-Muller codes with a large
number of errors,” in IEEE Information Theory Workshop, 2005.

[30] M. Rowshan, A. Burg, and E. Viterbo, “List decoder for Polar
codes, CRC-Polar codes, and PAC codes,” https://github.com/
mohammad-rowshan/List-Decoder-for-Polar-Codes-and-PAC-Codes,
2022.

[31] ——, “Polarization-adjusted convolutional (PAC) codes: Sequential de-
coding vs list decoding,” IEEE Trans. Veh. Technol., vol. 70, no. 2, pp.
1434–1447, 2021.

[32] The MathWorks Inc., “5G New Radio Polar Coding ,” https://
in.mathworks.com/help/5g/gs/polar-coding.html, Natick, Massachusetts,
United States.

[33] I. Dumer and K. Shabunov, “Soft-decision decoding of Reed-Muller
codes: recursive lists,” IEEE Trans. Inf. Theory, vol. 52, no. 3, pp. 1260–
1266, 2006.

https://arxiv.org/abs/2401.15678
https://digital-library.theiet.org/content/journals/10.1049/el_19780431
https://digital-library.theiet.org/content/journals/10.1049/el_19780431
https://github.com/mohammad-rowshan/List-Decoder-for-Polar-Codes-and-PAC-Codes
https://github.com/mohammad-rowshan/List-Decoder-for-Polar-Codes-and-PAC-Codes
https://in.mathworks.com/help/5g/gs/polar-coding.html
https://in.mathworks.com/help/5g/gs/polar-coding.html

	Introduction
	Recursive Subproduct Codes
	Fast ML Decoding of First-Order Codes
	Efficient ML Decoding
	Efficient Max-Log-MAP Decoding

	Decoding Second-Order Codes
	Projection Operation
	Belief Propagation Decoding of Second-Order Codes
	Improving the Performance via Local Graph Search

	Simulation Results
	References

