
Can LLMs Generate Architectural Design
Decisions? - An Exploratory Empirical study

Rudra Dhar
Software Engineering Research Centre

IIIT Hyderabad, India
rudra.dhar@research.iiit.ac.in

Karthik Vaidhyanathan
Software Engineering Research Centre

IIIT Hyderabad, India
karthik.vaidhyanathan@iiit.ac.in

Vasudeva Varma
Language Technologies Research Centre

IIIT Hyderabad, India
vv@iiit.ac.in

Abstract—Architectural Knowledge Management (AKM) in-
volves the organized handling of information related to archi-
tectural decisions and design within a project or organization.
An essential artefact of AKM is the Architecture Decision
Records (ADR), which documents key design decisions. ADRs
are documents that capture decision context, decision made and
various aspects related to a design decision, thereby promoting
transparency, collaboration, and understanding. Despite their
benefits, ADR adoption in software development has been slow
due to challenges like time constraints and inconsistent uptake.
Recent advancements in Large Language Models (LLMs) may
help bridge this adoption gap by facilitating ADR generation.
However, the effectiveness of LLM for ADR generation or
understanding is something that has not been explored. To this
end, in this work, we perform an exploratory study which aims
to investigate the feasibility of using LLM for the generation of
ADRs given the decision context. In our exploratory study, we
utilize GPT and T5-based models with 0-shot, few-shot, and fine-
tuning approaches to generate the Decision of an ADR given its
Context. Our results indicate that in a 0-shot setting, state-of-the-
art models such as GPT-4 generate relevant and accurate Design
Decisions, although they fall short of human-level performance.
Additionally, we observe that more cost-effective models like
GPT-3.5 can achieve similar outcomes in a few-shot setting, and
smaller models such as Flan-T5 can yield comparable results
after fine-tuning. To conclude, this exploratory study suggests
that LLM can generate Design Decisions, but further research
is required to attain human-level generation and establish stan-
dardized widespread adoption.

Index Terms—ADR, LLM

I. INTRODUCTION

Architectural Knowledge Management (AKM) is the orga-
nized management of information on architectural decisions
and designs within a project or organization. This involves
capturing architectural knowledge, styles, design patterns, and
quality attributes in a centralized repository. The focus is on
ensuring traceability of decisions, promoting collaboration,
facilitating knowledge reuse, and offering decision support.
AKM aims to enhance communication, learning, and decision-
making, contributing to the success of software development
projects or other endeavours with complex architectures.

For several decades, the significance of AKM has been
widely recognized, and various tools have been developed
to assist AKM. [1] Rainer et al. [2] state that while a huge
amount of work is done to support AKM activities and capture
Architectural Knowledge, it has not been sufficient. This has

been a crucial reason restricting a wider adoption of AKM
approaches, and more research is needed for automatically
capturing this knowledge [3].

An Architecture Decision Record (ADR) is a crucial part
of AKM. It entails the idea that software architecture is
considered a set of Design Decisions [4]. It is a document used
in software development to capture and document important
Architecture Design Decisions (ADD), made during the design
and development of a software system. A detail explanation
is given in Section II Despite the well-established benefits
of ADRs, their adoption has been slow to non-existent as
described by Georg et al. [5]. Unsuccessful adoption of
ADRs in software development can occur due to various
reasons like, inadequate training, overly complex processes,
time constraints, inconsistent adoption, low prioritization, and
failure to update and communicate ADRs.

Large Language models (LLMs) excel in comprehending
contexts and generating text accordingly. Over the recent years
due to advancement of LLMs, text generation has become
more accessible. This paper delves into the exploration of
whether LLMs can effectively generate Architectural Decision
Records (ADRs). While the prospect of generating entire
ADRs from a codebase remains a task for future endeavours,
the focus of this work is on utilizing LLMs to generate Design
Decisions from decisions Contexts as these are recognized as
the core components of an ADR.

In the realm of Natural Language Processing (NLP),
text generation is typically addressed through three distinct
methodologies when utilizing LLMs. These approaches in-
clude zero-shot prompting, few-shot prompting, and fine-
tuning. Section II provides a comprehensive exploration of the
advantages and disadvantages associated with each approach
[6]. It is recommended to initially employ zero-shot prompt-
ing, followed by few-shot prompting, and finally, fine-tuning
due to the escalating complexity of implementation.

In this exploratory empirical study, we commence by defin-
ing the experimental subject, which involves gathering ADRs
and choosing the LLMs for the study. Next we perform
experiments deploying the 3 approaches mentioned above. In
the zero-shot scenario, the model generates Decisions solely
based on Context. Whereas in the few-shot approach, the
model is trained in-context on a set of ADR examples. Lastly,
the paper delves into fine-tuning, where a generative model is

trained to produce Decisions from Contexts.
Our results show that LLMs do exhibit noteworthy capa-

bilities in generating Architectural Design Decisions. While
GPT-4 excels in 0-shot prompting, smaller models like text-
davinci-003 and Flan-T5-base achieve comparable results with
few-shot prompts and fine-tuning respectively. Smaller, fine-
tuned models, like Flan-T5-base, requiring minimal hosting
infrastructure, can prove useful for ADR generation within or-
ganizational infrastructure, particularly in privacy or security-
sensitive scenarios. We conclude that despite LLMs not being
entirely dependable for ADR generation, they can effectively
assist architects in documenting ADD.

Our experimental scripts and results are made available
with an open-source license, to enable the independent ver-
ification and replication of the results presented in this
study: https://anonymous.4open.science/r/LLMforADR-401C/
README.md

The remainder of this paper is structured as follows. Section
II presents background concepts on ADR, LLM, and text
generation. Section III presents the related work on tools
and technologies for AKM and ADR. Section IV details the
overall approach and the study design. Section V describes the
results of the different experiments performed, and Section VI
presents the related discussion. The threats to the validity of
this study are thoroughly analyzed in Section VII. Finally,
Section VIII documents our conclusions and future work.

II. BACKGROUND

This section describes some key concepts and ideas that are
used in this study, namely, ADRs and LLMs, and approaches
of text generation.

A. Architectural Decision Record (ADR)

Software Architecture can be represented as a set of Design
Decisions [4]. An Architecture Decision Record (ADR) is a
software development document that captures and documents
crucial architectural decisions made throughout a project. It
encompasses information about the context of the problem, the
decision taken, the anticipated consequences of the decision,
and relevant references. ADRs are instrumental in promot-
ing transparency, fostering collaboration, and preserving the
historical background of architectural choices. They play a
vital role in project documentation and ensuring that decision-
making is well-informed. The primary elements of an ADR
comprise the problem context and the associated decision.

B. Large Language Models (LLM)

A Language Model is a probabilistic model of a natural
language that can generate probabilities of a series of words.
Whereas Large Language Models (LLM) are similar proba-
bilistic AI models trained on extensive data for understanding
and generating text. They have billions of parameters and long
Context Lengths, and are used for various NLP tasks. The
Context Length of an LLM is the number of tokens it considers
when processing or generating text. Tokens, in turn, are units
of text, which might correspond to a word or a sub word. For

example, in a sentence like ”ChatGPT is great,” the tokens
are ”Chat”, ”GPT,” ”is,” and ”great.” Transformers, featuring
attention mechanisms are the underlying architecture of these
LLMs [7]. Transformers comprise two main components: an
Encoder and a Decoder. The Encoder is responsible for han-
dling input text, while the Decoder generates new text based on
the encoded information. LLMs can take different forms: they
can be Encoder-only models, exemplified by BERT [8], feature
an Encoder-Decoder architecture like T5 [9], or be Decoder-
only models, such as GPT [10]. GPT functions as a decoder
only model in text completion, embodying an auto-regressive
or causal LLM. In contrast, T5 is an encoder-decoder model,
incorporating both an encoder for processing input text and a
decoder for output text generation. In recent years, LLM’s
like GPT and T5 has revolutionised the world by making
Natural Language Generation task easy, robust, and accessible
to anyone. Throughout this paper, we use the terms GPT-
chat for the models GPT-3.5-turbo and GPT-4, distinguishing
them from other GPT models, which are referred to as text-
completion models.

C. Zero-shot, Few-shot and Fine-tuning approaches for text
generation

Zero-shot learning involves training a model to perform a
task without prior exposure to examples of that task. Few-
shot learning introduced by Tom et al. [11] extends this by
allowing the model to be trained in-context on a small number
of examples for a specific task. Fine-tuning entails further
training of a pre-existing model on a particular task to enhance
its performance on that task. Marius et al. [6] studies these
approaches in detail. Some important points, as described
below should be considered while choosing the right approach.

Zero-shot and few-shot procedures, as defined, do not
require training, in contrast to fine-tuning which explicitly
demands it. The training process is expensive as it involves
substantial investments in both hardware infrastructure and
expertise. Additionally, zero-shot prompting operates without
dependence on task-specific data, while few-shot prompting
employs a modest number of task-specific examples. On the
other hand, fine-tuning necessitates a considerable volume of
labeled task-specific data for the training process. As a result,
zero-shot and few-shot approaches demonstrate practical ad-
vantages, and the recommendation is to consider fine-tuning
only if these approaches prove ineffective. Theoretically, a
few-shot approach is supposed to generate better results than
0-shot prompt, whereas, fine-tuned models are supposed to
generate even better response in the domain it’s fine-tuned.

Nevertheless, the high-performing models designed for
zero-shot and few-shot scenarios are typically huge generic
LLMs boasting billions to trillions of parameters. Hosting
such models locally can be challenging and, in many cases,
impossible, leading to their reliance on cloud infrastructure
accessible over the internet. This reliance on external services
can give rise to privacy and legal concerns, particularly when
private or proprietary data needs to be transmitted to third-
party service providers. Conversely, smaller models tailored

to specific tasks can achieve comparable results without the
need for extensive resources. These more compact fine-tuned
models can be deployed on a company’s servers, mitigating
some of the privacy and legal considerations associated with
utilizing cloud services. Our study aims to explore all these
approaches with the different kind of generative LLM’s men-
tioned above.

III. RELATED WORK

For several decades, the significance of Architecture Knowl-
edge Management (AKM) has been widely recognized, and
various tools have been developed to assist AKM. [1] The
focus on capturing and documenting Architecture Design
Decisions (ADD) has grown with the recognition of ADDs’
significance [12] [13]. Notable efforts, like Arman et al.’s work
on retrieving ADDs through the analysis of project history ar-
tifacts, have been made [14]. However, these tools were largely
deterministic and labour intensive and did not capture much
attention from architects. However some Machine Learning
based tools have began to emerged in the recent years.

Machine learning for Software Engineering has been a
prominent topic in the past few years [15] [16]. Generative
AI is gaining popularity recently, particularly in tasks like
automatic code documentation and summarization 1. While
April et al. worked on Code Documentation in Computational
Notebooks [17], Jian et al. assembels multiples Foundational
models for code summarization [18]. Niche works, such as
Intent-Driven Comment Generation by Fangwen et al., have
explored specific aspects of this field [19].

Limited research exists in the realm of ML for Software
Architecture or ADD. For instance, Xueying et al. explored
the Identification of Design Decisions from Mailing List
using ML and NLP techniques predating the era of LLMs
[20]. In a similar vein, Manoj et al. focused on extracting
Design Decisions from natural language documentation, like
Jira tickets [21]. It’s noteworthy, however, that neither work
did not specifically address ADRs and did not involve the
generation of Design Decisions.

Despite these advancements, the field of Software Architec-
ture remains relatively untouched by Generative AI or LLMs.
In the context of ADR, Machine Learning applications have
been limited, and to the best of our knowledge no works
generating Design Decisions using LLMs exists.

IV. STUDY DESIGN AND EXECUTION

In this section, we document the empirical experiment
executed for this study in terms of goal (Section IV-A),
research questions (Section IV-B), study subject (Section IV-
C), experimental procedure (Section IV-D), and experimental
Metrics (Section IV-E). A visualization of the process is
provided in Figure 1.

1https://paperswithcode.com/task/code-summarization

A. Goal

This research is about an exploratory investigation to deter-
mine the feasibility of effectively utilizing LLMs for the gen-
eration of Architectural Design Decisions based on a provided
context. The study aims to identify both the advantages and
disadvantages associated with this approach. More formally,
by utilizing the Goal-Question-Metric approach [22], this
objective can be described as follows:
Analyze the effectiveness of Large Language Models
For the purpose of generating Architectural Design Decisions
With respect to contexts of Architecture Decision Records
From the viewpoint of Software Architects
In the context of using Generative AI for Architectural
Knowledge Management

B. Research Question

In order to achieve our goal, we address the following three
research questions (RQ):
RQ1 Can LLMs be successfully employed to generate

architectural design decisions from a given context in a zero-
shot setting?

Answering this introductory research question will help
us determine if an architect can directly utilize a generic,
foundational LLM, simply by presenting it with a decision
Context, to obtain the corresponding Design Decision.
RQ2 Does few-shot approach affect or improve a LLM’s

ability to generate Design Decisions?
With RQ2 we try to determine if LLMs can learn ADRs,

in-context and subsequently generate improved Design De-
cisions, by incorporating sample Context-Decision pairs into
the prompt. We investigate whether smaller and more cost-
effective LLMs can effectively generate design decisions in
few-approach at par more powerful models in 0-shot setting.
RQ3 Does Fine-tuning LLMs enhances it’s capability of

generating architectural Design Decisions based on a provided
context?

While research question RQ1 and RQ2 focuses on using
foundational LLMs off the shelf, in RQ3 we investigate if
fine-tuning an LLM with Context-Decision pairs improves it’s
capability of generating Design Decision from Context. Huge
LLMs capable of generating excellent text in zero and few-shot
are mostly available as cloud service and cannot be trained
or hosted loaclly. In RQ3 we investigate if smaller models
that can be trained and hosted locally can generate Design
Decisions at par the extensive models after fine-tuning.

C. Experimental Subject

1) ADR Data: We found several repositories from the
internet, mostly from github. After reviewing several options,
we chose five repositories with a substantial number of sample
ADRs that adhered mostly to a standard format 2. We got 17
ADRs from archane-framework3, 17 from winery4, 32 from

2https://adr.github.io/madr/
3https://github.com/arachne-framework/architecture
4https://github.com/eclipse/winery/tree/d84b9-

d7b6c9828fd20bc6b1e2fcc0cf3653c3d43/docs/adr

Fig. 1. Study Design

Context
We need to decide on whether to use Python as a
programming language for our project. Our project
involves data analysis, machine learning, and web
development.

Decision
We have decided to use Python as our primary program-
ming language for our project.

Fig. 2. Sample ADR after Extracting Context-Decision

joelparkerhenderson5 repository, 14 from cardano6, and 15
from island7. We gathered a total of 95 ADRs from these
sources or GitHub repositories, we were able to download it
directly. However, for other sources, we had to perform web
crawling on the master repository to retrieve the corresponding
ADRs. To facilitate our experiments, we focused on extracting
the Context and Decision components. This extraction process
involved a combination of regular expressions and manual
intervention. A sample ADR data after extracting Context-
Decision is given in Figure 2.

2) LLM: To have a comprehensive representation of
LLM’s, we selected models from two well-known model
series, GPT by OpenAI (representing decoder-only models)
and T5 by Google (representing Encoder-Decoder models).

5https://github.com/joelparkerhenderson/architecture-decision-
record/tree/main/examples

6https://plutus-apps.readthedocs.io/en/latest/adr/
7https://docs.devland.is/technical-overview/adr

TABLE I
LLMS USED IN THIS STUDY

family model size context length availability

GPT2 124M
GPT-2 GPT2-medium 335M 1024 local

GPT2-large 774M
GPT2-xl 1.5B

GPT-3 ada 350M 2048 api
davinci 175B

GPT-3.5 text-davinci-003 175B 4000 api
GPT-3.5-turbo 175B

GPT-4 GPT-4 T+ 8192 api

T5-small 60M
T5 T5-base 223M infinite local

T5-large 738M
T5-3b 3B

T0 T0-3b 3B infinite local

Flan-T5-small 77M
Flan-T5 Flan-T5-base 248M infinite local

Flan-T5-large 783M
Flan-T5-xl 3B

The models were chosen keeping in mind model sizes, data
they were trained on, training techniques, and interaction
modes.

Table II presents the essential characteristics of the models
employed in this study. ”Size” and ”Context Length” are
explained in Section II. The ”Availability” category indicates
whether the model can be hosted on a local PC or server, or
if an API call is required to access the model from the service

provider.
It is crucial to acknowledge that ADRs are extensive

texts, often comprising thousands of characters. However,
transformer-based models like GPTs have constraints on con-
text length. Consequently, we selectively utilized data that
falls below the context length for each model (refer Table
II), ensuring compatibility. Notably, T5-based models do not
face this limitation, as T5 can handle infinite context lengths
owing to its relative positional encoding. Nevertheless, owing
to hardware constraints, we found it necessary to establish
a threshold even for T5 models. Additionally, during fine
tuning, there was a necessity to exclude data beyond a specific
threshold due to hardware constraints.

D. Experimental Procedure

1) 0-shot approach: Here we provided the model with the
decision Context along with a relevant prompt, anticipating
it to produce the desired Design Decision. We experimented
with several prompt variations on a subset of samples. For
instance, in one prompt, we solely provided the Context
without additional information, while in another, we included
the phrase Architectural Decision Record within the prompt.
Through manual experimentation with various prompts on a
subset of samples, we identified the most effective prompts.
Some noteworthy observations made in this phase are given
in Section VI. For GPT text-completion models, and T5 based
models the most effective prompt is given in Figure 3 and for
GPT-chat models, and the most effective prompt is given in
Figure 4.

Architectural Decision Record
Context:
{context}
Decision:

Fig. 3. 0-shot prompt for GPT text-completion models, and T5 based models

{ ”role”: ”system”,
”content”: ”This is an Architectural Decision
Record for a software. Give a ## Decision corre-
sponding to the ## Context provided by the User
” }
{ ”role”: ”user”,
”content”: {context} }

Fig. 4. 0-shot prompt for GPT-chat models

2) few-shot approach: In this approach, we engaged in in-
context learning by manually selecting two ADRs as gold
samples. These gold samples were selected by one of the
authors who played the role of an expert Software Architect.
These gold samples, along with the context of the desired
sample, were provided to the model. The expectation was
for the model to learn in-context from the gold samples and
predict the desired Decision based on the Context from the
given sample.

Here also we performed manual experimentation with var-
ious prompts on a subset of samples and identified the most
effective prompts. For GPT text-completion models, and T5
based models the most effective prompt is given in Figure 5
and for GPT-chat models, and the most effective prompt is
given in Figure 6.

Context:
{gold context 1}
Decision:
{gold decision 1}
Context:
{gold context 2}
Decision:
{gold decision 2}
Context:
{context}
Decision:

Fig. 5. few-shot prompt for GPT text-completion models, and T5 based
models

{ ”role”: ”system”,
”content”: ”These are architecture decision records.
Follow the examples to get return Decision based
on Context provided by the User” }
{ ”role”: ”user”,
”content”: ”## Context {gold context 1}” }
{ ”role”: ”assistant”,
”content”: ”## Decision {gold decision 1}” }
{ ”role”: ”user”,
”content”: ”## Context {gold context 2}” }
{ ”role”: ”assistant”,
”content”: ”## Decision {gold decision 2}” }
{ ”role”: ”user”,
”content”: ”## Context {context}”

Fig. 6. few-shot prompt for GPT-chat models

3) fine-tuning approach: For fine-tuning we used GPT2 and
four T5 based models. GPT2 is a text completion model.
Hence for GPT2, we concatenated each context with the
corresponding decision and trained the model on generating
the full text. However T5 is an encoder-decoder model. Hence
the Context was provided to the Encoder, and the Decoder was
supposed to generate the Decision. The model was trained on
generating the correct Decision.

During training we saved a checkpoint per epoch, and used
the checkpoint with least validation loss for inference. The
validation loss / epoch curves are given in Figure 7. During
inference, we passed the Decision Context to the models and
expected it to return the desired Design Decision.

E. Metrics

In accordance with NLP literature, the evaluation of text
generation often relies on a combination of metrics rather
than a single standard measure. In line with this practice, our

Fig. 7. Training: validation loss / epoch

GPT2
Generate: {context} {decision}

T5
Read: {context}
Generate: {decision}

Fig. 8. Training Format

evaluation incorporates ROUGE-1, BLEU score, METEOR,
and BERT Score.

ROUGE (Recall-Oriented Understudy for Gisting Evalua-
tion) [23] is a set of metrics used to evaluate the quality of
machine-generated summaries. Here we are using ROUGE-
1 that measures the overlap of unigrams (individual words)
between the system-generated text and the reference text.

The BLEU (Bilingual Evaluation Understudy) [24] score
is a metric used to evaluate the quality of machine-translated
text.

METEOR (Metric for Evaluation of Translation with Ex-
plicit ORdering) [25] is a metric used for evaluating machine-
generated text, particularly in the context of machine transla-
tion.

BERT Score [26] is an automatic evaluation metric used to
assess the quality of text generation. It leverages pre-trained
contextual embeddings from BERT (Bidirectional Encoder
Representations from Transformers) [8] and measures the
similarity between words in candidate and reference sentences
using cosine similarity. BERT Score has been shown to corre-
late well with human judgment in evaluating text generation
outputs. Hence we use it as the primary metric in this study.

Our experimental scripts and details can be found in:
https://anonymous.4open.science/r/LLMforADR-401C/
README.md

V. RESULTS

In this section, we report the results of our empirical
experimentation according to the research questions guiding
this study (see Section IV).

Tables IV, V and VI present the metric values for the 0-
shot, few-shot, and fine-tuning experiments, respectively, with
the highest value for each metric emphasized in bold. The
BERT score (F1), which is our primary metric, is graphically
represented in Figure 9. Although there are instances where the
metrics do not align, the result tables show that they generally

work in tandem and show a correlation with the BERT score
(F1).

In addition to computing evaluation metrics, we manually
reviewed a subset of the generated samples, focusing on both
content and formatting of the generated Decisions. Some
sample generated Decision are given in Figure 10, following
the same sample from Figure 2.

A. Results RQ1: Can LLMs be successfully employed to
generate architectural design decisions from a given context
in a zero-shot setting?

In this introductory research question, we determine whether
an architect can effectively employ an LLM by providing it
with a decision Context to derive the corresponding Design
Decision.

While experimenting with various prompts to find the most
effective prompt, we observed including the term ’Architec-
tural Decision Record’ in the prompt enhances the overall
performance in 0-shot prompting for all models. However,
this improvement pertains for adhering to the ADR markdown
format rather than impacting the content of the Design Deci-
sion the model is required to produce. We also find including
the Title (e.g., ’MySQL database’) of the ADR does not
yield notable improvements in the results for 0-shot prompting
across all the models. We’ve also noticed that larger and more
descriptive contexts lead to better and more comprehensive
decisions.

From Table III and Figure 9 it is evident that the large GPT
models and T0 performs well in 0-shot approach, while the T5
models show mediocre results, and the smaller GPT models
performs the worst. GPT-4 scores 0.849 as Bert Score (F1)
stands out to be the best model with best performance in all
metrics other than Blue score and Bert Score (precision).

Upon manually inspecting the generated content, it becomes
evident that larger GPT models consistently produce pertinent
responses in the correct ADR format, with GPT-4’s formatting
approaching human level. T0 also generates relevant responses
but lacks proper formatting. Conversely, the remaining models
demonstrate suboptimal performance in both generating accu-
rate decisions and formatting them correctly, with smaller GPT
models frequently producing hallucinatory content.

B. Results RQ2: Does few-shot approach affect or improve a
LLM’s ability to generate Design Decisions?

In RQ2 we aim to assess the capability of LLMs in
generating Design Decisons in few-shot approach. Our goal is

TABLE II
RESULTS 0-SHOT

model rouge-1 blue meteor bert score support
precision recall f1

GPT2 0.071 0.008 0.109 0.740 0.808 0.772 78
GPT2-medium 0.071 0.007 0.103 0.734 0.81 0.769 78

GPT2-large 0.081 0.009 0.115 0.737 0.815 0.773 78
GPT2-xl 0.084 0.01 0.114 0.749 0.822 0.783 78

GPT3-ada 0.129 0.005 0.137 0.79 0.823 0.805 89
GPT3-davinci 0.154 0.009 0.167 0.799 0.837 0.817 89

GPT3.5-text-davinci-003 0.242 0.031 0.198 0.846 0.849 0.847 91
GPT-3.5-turbo 0.235 0.029 0.213 0.836 0.848 0.841 92

GPT-4 0.259 0.028 0.219 0.847 0.851 0.849 95

T5-small 0.203 0.017 0.168 0.84 0.831 0.835 91
T5-base 0.164 0.011 0.142 0.829 0.823 0.825 91
T5-large 0.16 0.014 0.137 0.816 0.823 0.819 91
T5-3b 0.088 0.004 0.077 0.794 0.81 0.801 91
t0-3b 0.187 0.005 0.122 0.856 0.823 0.839 91

Flan-T5-small 0.142 0.008 0.101 0.823 0.813 0.817 91
Flan-T5-base 0.158 0.012 0.115 0.845 0.822 0.833 91
Flan-T5-large 0.166 0.014 0.105 0.836 0.822 0.827 91

Flan-T5-xl 0.147 0.011 0.089 0.837 0.816 0.825 91

TABLE III
RESULTS FEW-SHOT

model rouge-1 blue meteor bert score support
precision recall f1

GPT2 0.087 0.012 0.135 0.778 0.841 0.807 13
GPT2-medium 0.11 0.016 0.017 0.785 0.837 0.809 13

GPT2-large 0.117 0.018 0.176 0.79 0.851 0.818 13
GPT2-xl 0.122 0.018 0.18 0.794 0.857 0.823 13

GPT3-ada 0.14 0.008 0.158 0.789 0.827 0.807 86
GPT3-davinci 0.171 0.011 0.181 0.802 0.84 0.82 86

GPT3.5-text-davinci-003 0.245 0.028 0.207 0.849 0.851 0.849 91
GPT-3.5-turbo 0.226 0.027 0.219 0.832 0.85 0.84 92

GPT-4 0.23 0.03 0.21 0.836 0.851 0.843 93

T5-small 0.151 0.007 0.121 0.824 0.819 0.821 91
T5-base 0.146 0.008 0.12 0.805 0.821 0.812 91
T5-large 0.177 0.014 0.146 0.811 0.825 0.817 91
T5-3b 0.136 0.006 0.1 0.805 0.821 0.812 91
t0-3b 0.152 0.011 0.133 0.808 0.82 0.813 91

Flan-T5-small 0.162 0.005 0.152 0.782 0.824 0.801 91
Flan-T5-base 0.176 0.011 0.158 0.811 0.829 0.819 91
Flan-T5-large 0.168 0.014 0.16 0.81 0.828 0.818 91

Flan-T5-xl 0.17 0.011 0.155 0.805 0.825 0.814 91

to access if smaller, more economical LLMs can outperform
larger models in zero-shot scenarios by integrating sample
Context-Decision pairs into the prompts.

Based on the data presented in Table IV and the observations
from Figure 9, it is apparent that the larger GPT models
excel when employing a few-shot approach, whereas the
performance of other models remains moderate. Notably, GPT-
3.5’s text-davinci-003 stands out as the top performer in this
approach, attaining the highest scores in rouge-1, BERT-score
(precision), and BERT-score (F1). Specifically, it achieves a
BERT-score (F1) of 0.849, which matches the performance of
GPT-4 in the 0-shot setting.

Upon manually examining the generated content, we ob-
serve that the quality of generation closely resembles that of
the 0-shot approach, wherein larger GPT models consistently

produce relevant Design Decisions with appropriate format-
ting, in contrast to other models that exhibit shortcomings
in this regard. Notably, smaller GPT models stand out as an
exception. Although these smaller models frequently generated
hallucinatory content in the 0-shot approach, there is a signifi-
cant reduction in hallucinations when employing the few-shot
approach. The rise in metric values, as illustrated in Figure 9,
further attests to this observation.

C. Results RQ3: Does Fine-tuning LLMs enhances it’s capa-
bility of generating architectural Design Decisions based on
a provided context?

RQ3 examines whether fine-tuning LLMs with Context-
Decision pairs improves their ability to generate Design Deci-
sions. We explore if smaller locally trainable and deployable

TABLE IV
RESULTS FINE-TUNING

model rouge-1 blue meteor bert score support
precision recall f1 Train Test

GPT2 0.155 0.01 0.176 0.797 0.834 0.815 62 16
T5-small 0.199 0.008 0.156 0.835 0.824 0.829 73 19
T5-base 0.195 0.022 0.168 0.839 0.838 0.838 71 18

Flan-T5-small 0.19 0.018 0.139 0.842 0.822 0.831 73 19
Flan-T5-base 0.231 0.028 0.171 0.842 0.841 0.841 71 18

Fig. 9. BERT score (F1)

fine-tuned models can match the capability of extensive cloud-
based models in generating comparable Design Decisions.

Table V and Figure 9 illustrate that all the fine-tuned models
outperform their off-the-shelf counterparts, with T5 being the
only exception. Flan-T5 emerges as the leading fine-tuned
model across all metrics, achieving an impressive score of
0.841 for BERT-score (F1).

On manual examination of the generated content, we find
that the T5 models stop hallucinating after fine-tuning. Addi-
tionally, the decision content also improves after fine-tuning.

VI. DISCUSSION

This exploratory study provides empirical evidence that
LLM’s can be leveraged to Generate Architecture Design
Decision given the Context, and would definitely help Soft-
ware Architects in generating ADR’s. Below, we address
each research question by examining the outcomes of our
experiments. Several conclusions are drawn regarding the
efficiency of using LLMs to generate ADRs.

A. Can LLMs be successfully employed to generate architec-
tural design decisions from a given context in a zero-shot
setting? (RQ1)

Yes, LLMs can be used to generate Design Decisions in
zero-shot setting, but not entirely autonomously. Even the
best performing models fails to generate the required Decision
comprehensively, necessitating human involvement.

Notably, smaller models such as GPT-2, T5, and Flan-T5,
originally not designed for zero-shot capabilities, exhibit sub-
par performance. T0, despite being a relatively smaller model,
returns relevant decisions but lacks adherence to the ADR
format. Contrastingly, smaller GPT models performs better
in adhering to correct ADR format than producing correct
response. GPT-4 achieves a standard comparable to human
performance in ADR format but falls short in generating the
required Decision comprehensively. Both manual observation
and evaluation metrics support these findings, necessitating
further research on leveraging LLMs to reach human-level
proficiency in generating Design Decisions.

It’s important to highlight that both GPT-3.5 and GPT-
4 are cloud-based and offered as ’Software as a Service.’
Consequently, to use these models, data must be transmitted to
the service provider, like OpenAI8, potentially raising concerns
related to privacy, intellectual security, or legal implications.

Hence we recommend that if security is not a concern,
LLMs like GPT-3.5 and GPT-4 can be successfully employed
to generate Design Decisions, but not autonomously. Rather it
should be used to assist Architects in documenting and making
Design Decisions.

B. Does few-shot approach affect or improve a LLM’s ability
to generate Design Decisions? (RQ2)

The impact of the few-shot approach compared to the
0-shot approach is inconclusive. As depicted in Figure 9,

8https://platform.openai.com/docs/models

Actual Decision
We have decided to use Python as our primary
programming language for our project.

Decision Generated by GPT-4 in 0-shot
We will use Python as our programming language
for this project. Python has emerged as a reliable,
versatile language with a rich ecosystem of libraries and
frameworks that cater to our specific needs including
data analysis (Pandas, NumPy), machine learning (scikit-
learn, TensorFlow), and web development (Django,
Flask). Its simplicity and readability make for quicker
turnaround times in development phases. Therefore,
Python fits perfectly with the requirements of our
project, providing us with all the tools necessary for
successful development and deployment.

Decision Generated by text-davinci-003 in few-shot
After considering the various criteria discussed, we have
decided to go ahead and use Python for our project.
Python is a versatile, powerful language with a wide range
of features, libraries, and tools that make it ideal for
multiple tasks, including data analysis, machine learning,
and web development. It is simple to learn and use, and
there is a large community of developers who can provide
support and resources. Python is also open-source, free
to use, and has a great number of packages available for
various tasks.
Python is also a great choice in terms of performance and
scalability. With the right packages, it can be used for
big data processing and high performance applications.
Additionally, Python is an interpreted language, which
makes it easier to debug and maintain than compiled
languages.
Overall, Python is a great choice for our project, given
its features and capabilities, scalability, and community
support.

Decision Generated by Flan-T5-small after fine-tuning
It will have a large dataset, which will display a lot
of data. This can help us in preparing the application.
We need to choose Python as a programming language,
because all of our projects will require Python to use it.

Fig. 10. Sample Generated Decision

while the few-shot approach enhances performance for GPT-2
models, in certain models such as GPT-3, GPT-3.5 and GPT-
4 the effect is insignificant. Interestingly, for some models
like the entire T5 series (excluding T5-3B), the performance
actually decreases. This observation is consistent across other
metrics. Manual observations suggests that neither adherence
to the ADR format nor the content of the generated Decision
improves significantly with the few-shot approach for any of
the models. The only exception is GPT-2, where the few-shot

Main findings RQ1 (Generating Design Decisions in
0-shot approach): While LLMs can generate Design De-
cisions using a 0-shot approach, the quality does not reach
human-level. Nonetheless, this method can be employed
to support architects in documenting and formulating
Design Decisions.

approach reduces hallucinations.
Based on the metrics, it can be inferred that the performance

of GPT-3.5’s text-davinci-003 using the few-shot approach is
equal to that of GPT-4 using the 0-shot approach, both of
which exhibit the best metrics in our study. However, it’s
important to note that GPT-4 is significantly larger (10 times)
and expensive (1.5 times) compared text-davinci-003.

Hence we infer from this study that one may use smaller
and cheaper models like GPT-3.5’s text-davinci-003 in a few
shot approach and generate Design Decisions of quality at par
with powerful models like GPT-4 at a cheaper rate.

Main findings RQ2 (Impact of few-shot approach in
Generating Design Decisions): While the performance
of certain LLMs may show improvement in a few-shot
setting, the overall phenomenon lacks generalization and
remains inconclusive. Nevertheless, smaller LLMs, when
presented with a few-shot prompt, can be employed as
substitutes for larger LLMs in certain scenarios.

C. Does Fine-tuning LLMs enhances it’s capability of gen-
erating architectural Design Decisions based on a provided
context? (RQ3)

It is conclusive from the metrics that fine-tuning does
improve the Design Decisions generating capability of LLMs,
with T5-small being the only exception. Manual observation
also suggests the same both with respect to formatting and
content. Though it’s observed that even the best performing
fine-tuned model can’t match the performance of GPT-4 in
terms of following ADR markdown format.

The metrics show that after fine-tuning, the top-performing
model, Flan-T5-base, with 248 million parameters, achieves
results comparable with GPT-3.5 in a few-shot approach,
which has 175 billion parameters (700 times more). Addition-
ally, fine-tuned Flan-T5-base also produces results comparable
to GPT-4 in a 0-shot approach, boasting over a trillion parame-
ters (7000 times more). This clearly demonstrates that smaller
fine-tuned models can effectively substitute larger models for
generating design decisions. Due to hardware limitations, our
fine-tuning efforts were capped at models with fewer than
400 million parameters. The results suggest that T5-3B or
Flan-T5-xl, each with 3 billion parameters (30 times less than
GPT-3.5), could potentially match GPT-4 performance through
fine-tuning. This indicates that a more extensive study with
increased data and hardware capabilities is needed which may
yield more promising outcomes.

It is crucial to emphasize that smaller models, such as Flan-
T5, can be hosted in-house in most corporate environments,
thereby mitigating potential privacy, security, or legal con-
cerns.

Hence, with respect to RQ3 we conclude, while smaller
fine-tuned models like Flan-T5 may not reach the performance
level of giants like GPT-4 in generating design decisions, they
serve as valuable alternatives in scenarios where privacy or
security considerations are paramount.

Main findings RQ3 (Impact of Fine-tuning in Gen-
erating Design Decisions): Fine-tuned LLMs exhibit
improved capability in generating design decisions. Com-
pact fine-tuned models, which require minimal infras-
tructure for hosting, demonstrate results comparable with
extensive LLMs and can be utilized as their substitutes
in specific scenarios.

VII. THREATS TO VALIDITY

In this section, we discuss threats to the validity of our study,
following the categorization provided by Wholin et al. [27].

A. Internal Validity
A threat to internal validity may arise from the selection of

metrics, given that evaluating text generation is a challenging
and unresolved problem. To mitigate this threat, we have
addressed it by adopting a set of metrics commonly utilized by
the NLP community. These metrics aim to capture the quality
of generated text from various perspectives.

An additional threat to internal validity could be the Incon-
sistency of ADR writing style, which might lead to inaccurate
evaluations. Different organizations or individuals employ
different styles for writing ADRs. For example, while some
may adopt a precise writing approach, others may opt for a
descriptive manner. So even if the LLM generates a Design
Decision that matches with the manually written one, the
evaluation metrics score may decrease if the wordings, or style
doesn’t match. To mitigate this threat, we have introduces a set
of metrics, which captures the quality of generated text from
different perspectives. Additionally, we have introduced the
BERT score, which evaluates based on the semantic meaning
of words rather than a strict word-to-word comparison, aiming
to mitigate the impact of stylistic variations.

B. Construct Validity
A threat to construct validity is the limited amount of data

used for training while addressing RQ3. This threat remains
partially mitigated due to unavailability of open source ADR
repositories on the internet. Despite this challenge, we have
gathered 95 ADRs from 5 different repositories. While fine-
tuning, we used 80% of the data for training, and rest 20%
for testing. It should be mentioned that we used the same
data for validation and testing for the fine-tuning experiments
as explained in Section IV due to the low amount of data
available. This can be considered a limitation to this study,
though it’s unlikely that it could change the conclusions.

C. External Validity

A potential threat to the external validity of our study
arises from the selection of LLMs. Given the availability of
numerous LLMs from various organizations, it is impractical
to include all in our study. Thus, we must carefully choose
LLMs that are indicative of the broader landscape. To address
this concern, we opted for two widely recognized model series:
GPT by OpenAI, representing decoder-only models, and T5 by
Google, representing Encoder-Decoder models. Within these
series, we have incorporated models of varying sizes, training
data, training techniques, interaction styles, and other pertinent
differences to increase the diversity of our chosen models.
For instance, we varied the model sizes from small to extra-
large, for T5 and Flan-T5 models. GPT-3 and GPT-3.5 differ
in both training data and methods. Additionally, GPT offers
text-completion and chat models, both included in this study.

An additional concern regarding External Validity is the
potential that the gathered ADRs for this study may not be
representative of ADRs in a broader context. To address this
concern, we conducted thorough searches for ADRs on the
web and also explored GitHub to identify open-source ADR
repositories. We selected as many repositories as possible,
ensuring adherence to ADR format and rules, and sought
diversity in terms of style and source. To the best of our
knowledge, the collected ADRs are representative of ADRs
in general.

VIII. CONCLUSION AND FUTURE WORK

This study explores the potential of leveraging LLMs,
specifically GPT and T5-based models, to automate the gen-
eration of ADRs, which are a crucial part of AKM. The
investigation involves using 0-shot, few-shot, and fine-tuning
approaches to generate ADR Decisions based on their re-
spective Contexts. The study reveals that LLMs demonstrate
the capability to generate ADD. Models like GPT-3.5, GPT-
4, and T0 effectively generate relevant Design Decisions
adhering to ADR markdown format with both 0-shot and
few-shot prompting. Fine-tuning enhances the performance of
all models significantly. GPT-4 excels in 0-shot prompting,
while even smaller models like text-davinci-003 yield simi-
lar results using a few-shot approach. Smaller models such
as Flan-T5-base demonstrate comparable results after fine-
tuning. In summary, LLMs may not be entirely dependable
for ADR generation, but they can effectively assist architects
in documenting and formulating Design Decisions. Smaller
fine-tuned models, requiring minimal hosting, can be locally
employed for Decision generation, especially in privacy or
security-sensitive scenarios.

Future work involves fine-tuning large LLMs to enhance
Design Decision generation, aiming for human-level perfor-
mance. Additionally, in vivo experiments with architects in
live projects will assess the effectiveness of auto-generating
ADRs for widespread adoption. Recognizing challenges in
fully capturing Design Decisions from decision Context, future
efforts will focus on integrating contextual information from
diverse sources, including other ADRs, AKM components like

design diagrams, and the codebase, to improve the generation
process.

REFERENCES

[1] Tang, Antony & Avgeriou, Paris & Jansen, Anton & Capilla, Rafael
& Ali Babar, Muhammad. (2013). A comparative study of architecture
knowledge management tools. Journal of Systems and Software. 352-
370. 10.1016/j.jss.2009.08.032.

[2] Weinreich, Rainer & Groher, Iris. (2016). Software architecture knowl-
edge management approaches and their support for knowledge manage-
ment activities: A systematic literature review. Information and Software
Technology. 80. 10.1016/j.infsof.2016.09.007.

[3] Capilla, Rafael & Jansen, Anton & Tang, Antony & Avgeriou, Paris
& Ali Babar, Muhammad. (2016). 10 years of Software Architecture
Knowledge Management: Practice and Future. Journal of Systems and
Software. 10.1016/j.jss.2015.08.054.

[4] Jansen, Anton & Bosch, Jan. (2005). Software Architecture as a Set of
Architectural Design Decisions. Proceedings - 5th Working IEEE/IFIP
Conference on Software Architecture, WICSA 2005. 2005. 109-120.
10.1109/WICSA.2005.61.

[5] Buchgeher, Georg & Schöberl, Stefan & Geist, Verena & Dorninger,
Bernhard & Haindl, Philipp & Weinreich, Rainer. (2023). Using Ar-
chitecture Decision Records in Open Source Projects – An MSR
Study on GitHub. IEEE Access. 11. 63725 - 63740. 10.1109/AC-
CESS.2023.3287654.

[6] Marius Mosbach, Tiago Pimentel, Shauli Ravfogel, Dietrich Klakow,
and Yanai Elazar. 2023. Few-shot Fine-tuning vs. In-context Learning:
A Fair Comparison and Evaluation. In Findings of the Association for
Computational Linguistics: ACL 2023, pages 12284–12314, Toronto,
Canada. Association for Computational Linguistics.

[7] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion
Jones, Aidan N. Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017.
Attention is all you need. In Proceedings of the 31st International Con-
ference on Neural Information Processing Systems (NIPS’17). Curran
Associates Inc., Red Hook, NY, USA, 6000–6010.

[8] Devlin, Jacob & Chang, Ming-Wei & Lee, Kenton & Toutanova,
Kristina. (2018). BERT: Pre-training of Deep Bidirectional Transformers
for Language Understanding.

[9] Raffel, Colin, Noam M. Shazeer, Adam Roberts, Katherine Lee, Sha-
ran Narang, Michael Matena, Yanqi Zhou, Wei Li and Peter J. Liu.
“Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer.” J. Mach. Learn. Res. 21 (2019): 140:1-140:67.

[10] Radford, Alec & Narasimhan, Karthik & Salimans, Tim & Sutskever,
Ilya. ”Improving language understanding by generative pre-training.”
(2018):

[11] Brown, Tom & Mann, Benjamin & Ryder, Nick & Subbiah, Melanie &
Kaplan, Jared & Dhariwal, Prafulla & Neelakantan, Arvind & Shyam,
Pranav & Sastry, Girish & Askell, Amanda & Agarwal, Sandhini &
Herbert-Voss, Ariel & Krueger, Gretchen & Henighan, Tom & Child,
Rewon & Ramesh, Aditya & Ziegler, Daniel & Wu, Jeffrey & Winter,
Clemens & Amodei, Dario. (2020). Language Models are Few-Shot
Learners.

[12] Shahin, Mojtaba & Liang, Peng & Khayyambashi, Mohammad. (2009).
Architectural Design Decision: Existing Models and Tools. 293-296.
10.1109/WICSA.2009.5290823.

[13] Scheerer, Max & Busch, Axel & Koziolek, Anne. (2017). Automatic
evaluation of complex design decisions in component-based software
architectures. 67-76. 10.1145/3127041.3127059.

[14] Shahbazian, Arman & Lee, Youn & Le, Duc & Brun, Yuriy & Medvi-
dovic, Nenad. (2018). Recovering Architectural Design Decisions. 95-
9509. 10.1109/ICSA.2018.00019.

[15] Shafiq, Saad & Mashkoor, Atif & Dorn, Christoph & Egyed, Alexander.
(2020). Machine Learning for Software Engineering: A Systematic
Mapping.

[16] Meinke, Karl & Bennaceur, Amel. (2017). Machine Learning
for Software Engineering Models, Methods, and Applications.
10.1145/3183440.3183461.

[17] Wang, April & Wang, Dakuo & Drozdal, Jaimie & Muller, Michael &
Park, Soya & Weisz, Justin & Liu, Xuye & Wu, Lingfei & Dugan,
Casey. (2022). Documentation Matters: Human-Centered AI System
to Assist Data Science Code Documentation in Computational Note-
books. ACM Transactions on Computer-Human Interaction. 29. 1-33.
10.1145/3489465.

[18] Gu, Jian & Salza, Pasquale & Gall, Harald. (2022). Assemble
Foundation Models for Automatic Code Summarization. 935-946.
10.1109/SANER53432.2022.00112.

[19] Mu, Fangwen & Chen, Xiao & Shi, Lin & Wang, Song & Wang, Qing.
(2023). Developer-Intent Driven Code Comment Generation.

[20] Li, Xueying & Liang, Peng & Li, Zengyang. (2020). Automatic Iden-
tification of Decisions from the Hibernate Developer Mailing List.
10.1145/3383219.3383225.

[21] Bhat, Manoj & Tinnes, Christof & Shumaiev, Klym & Biesdorf, Andreas
& Hohenstein, Uwe & Matthes, Florian. (2019). ADeX: A Tool for
Automatic Curation of Design Decision Knowledge for Architectural
Decision Recommendations. 10.1109/ICSA-C.2019.00035.

[22] V. R. Basili, G. Caldiera, and D. Rombach, “The Goal Question Metric
Approach,” in Encyclopedia of Software Engineering. Wiley, 1994, pp.
528–532.

[23] Chin-Yew Lin. 2004. ROUGE: A Package for Automatic Evaluation
of Summaries. In Text Summarization Branches Out, pages 74–81,
Barcelona, Spain. Association for Computational Linguistics.

[24] Papineni, Kishore & Roukos, Salim & Ward, Todd & Zhu, Wei Jing.
(2002). BLEU: a Method for Automatic Evaluation of Machine Trans-
lation. 10.3115/1073083.1073135.

[25] Lavie, Alon & Agarwal, Abhaya. (2007). METEOR: An automatic
metric for MT evaluation with high levels of correlation with human
judgments. 228-231.

[26] Zhang, Tianyi & Kishore, Varsha & Wu, Felix & Weinberger, Kilian
& Artzi, Yoav. (2019). BERTScore: Evaluating Text Generation with
BERT.

[27] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell, and A.
Wesslen, Experimentation in software engineering. Springer Science &
Business Media, 2012

