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ABSTRACT
The rapid evolution of Large Language Models (LLMs) have opened
new possibilities in automating tasks across the software develop-
ing life cycle, including test case generation This paper presents
a comparative analysis of six LLMs in the context of generating
test cases for technical requirements written in natural language
(in this case English). We compare publicly available general pur-
pose LLMs viz., BARD, ChatGPT3.5, Claude, Gemini, ChatGPT4.o
(Omni) and Llama3. The generated test cases are tested against a
Simulink model created for the corresponding set of requirements.
The coverage metrics thus generated are used for a quantitative
comparison of the LLMs.

CCS CONCEPTS
• Software and its engineering → Software notations and
tools.
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1 INTRODUCTION
Large Language Models (LLMs) are Artificial Intelligence (AI) mod-
els trained on vast text data to understand and generate human-like
language, typically using deep learning architectures like trans-
formers. As all public LLMs are trained on a huge corpus of generic
data without any domain specification it could be considered that
an LLM is a general purpose response generator where the query
could be from any domain in which the LLMs’ training data has
been sourced. Currently majority of LLMs are being used in tasks
such as translation, content generation, summarizing, question and
answers sentiment analysis etc. LLMs have achieved much progress
in recent times in many domains and most of the popular LLMs
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are available in the form of apps or with simple user interfaces that
assist with using the model as a service.

LLMs ,trained on a sufficiently large corpus of data, are antic-
ipated to produce meaningful outcomes in various software de-
velopment lifecycle tasks. The generation of test cases represents
one such task that, while specific in its execution, can be largely
domain-agnostic across numerous software applications. It is well
established in design and development process that test cases can be
generated from design models and/or code. For example, MATLAB
test cases can be generated for the system models using Simulink
Design Verifier1 (SLDV). Present day practices are increasingly ad-
vocating a Shift-left approach, i.e., identifying and resolving bugs
early in the development lifecycle to improve software quality,
achieve better test coverage, get continuous feedback, etc. Auto-
matic test case generation can speed up shift-left approach where
in the test cases are generated at the same time as requirements.

The predominant format for software requirements specifica-
tion documents is natural language. Unlike structured modeling
languages, like UML and BMPL, there has been a notable lack of
support for the generation of test cases from natural languages like
English. LLMs trained on extensive data corpus have understanding
of various code patterns, syntax, and semantics [4]. LLMs with this
enhanced understanding can generate diverse & comprehensive
test scenarios and test cases that effectively explore edge cases
and reveal potential bugs. This capability becomes increasingly
valuable in ensuring thorough and effective testing processes for
complex systems. LLMs have the potential to create a wide array
of test cases that encompass various testing scenarios, including
Unit Testing, API Testing, Functional Testing, Integration Testing,
Usability Testing, and Security Testing [2] In this paper, we com-
pare auto test case generation capabilities of six publicly available
LLMs namely: BARD, ChatGPT3.5, Claude, Gemini, ChatGPT4.o
(Omni) and Llama3.

The main contribution of this paper is a quantitative analysis of
the performance of publicly available LLMs with respect to their
ability to produce test cases from human readable requirements.
The paper address the following research questions:

(1) Can LLMs generate test cases for a software model using
only its textual requirements as input?

(2) In what cases can LLMs not generate test cases from require-
ments

(3) If LLMs produce test cases, what will be their level2 (Accep-
tance Level, System Level, Integration Level or Unit/Code
level)?

(4) How to quantify the effectiveness of the produced test cases

1https://in.mathworks.com/products/simulink-design-verifier.html
2The ’Levels’ are with respect to V model of the Software Development Life Cycle
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Figure 1: Process used for the study

2 RELATEDWORK
Several researchers have argued the need for automated generation
of test cases and capabilities of LLMs with respect of test case
generation. They have identified several challenges in the test case
generation process including validity of generated test cases, deficits
in domain-specific knowledge, need for human intervention, overall
coverage of the test [5].

LLMs have been used for auto test case generation across a wide
variety of domains including distributed control systems (DCS)
and programmable logic control systems (PLCs) [10], gaming [15],
genetic programming agents [8], medical services [11]. And, among
the scenarios where auto test cases generation using LLMs were
more successful have been Unit tests [7], conversational agents
[3], Graphical User Interface (GUI) [13]. Challenges faced while
deploying the LLMs for auto test case generation [5] include paucity
of “real-world” datasets, biases and shortcomings in deciphering of
intent of a requirement [12], non-availability of formal structured
real-world bug reports. It has been observed in prior research that
LLMs struggle to generate correct test cases. Researchers have
proposed approaches to counter this by fine-tuning the test case
generation with further training on specific APIs [15], making the
process human-interactive [6], using LLM-based SDKs (software
development kits) [16]. However, in all these cases, it could be
observed that the input for LLMs is primarily code. In this study,
we use textual natural language requirements to get test cases for
the final system.

3 EXPERIMENTAL SETUP
For purposes of this study, technical requirements have been spec-
ified in natural language. Six general purpose LLMs viz., BARD,
ChatGPT3.5, Claude, Gemini, ChatGPT4.o (Omni) and Llama3 were
chosen. The key factors for choosing these six LLMs are: public
availability, diverse architecture, market relevance, and the vari-
ety of potential use cases they support. To minimize bias in the
results, a consistent prompt has been utilized across all models,
ensuring that the evaluation remains impartial and that the efficacy
of each LLM can be fairly assessed. While specialized or contextu-
alized prompts may have produced higher-quality test cases, the
primary objective of this study was to facilitate a fair comparison
among general-purpose LLMs. Consequently, domain-specific or
fine-tuned LLMs were excluded from consideration in this analysis

to maintain consistency and impartiality in the evaluation process.
This approach allows for a clearer assessment of the capabilities of
each selected LLM within the specified parameters.

The responses generated from the prompts were processed and
formulated into test cases, which were subsequently utilized to
evaluate the software models developed from the corresponding
requirements. In parallel, Simulink models were created for the
same requirements, and test cases were generated using SLDV. One
of the authors possesses industrial experience in working with
safety-critical systems and regularly utilizes SLDV as part of their
work. Given that the primary objective of the study was to assess
the quality of the test cases generated by each of the selected LLMs,
it was a logical choice to capture the test results from the six LLMs
and compare them with the test cases obtained from SLDV. The
test cases generated by SLDV from the MATLAB models serve as
the ground truth for this evaluation.

3.1 Experimental Process
The process followed for the comparitive study is shown in Figure
1. This process encompasses the following steps: (1) Requirements
Creation, (2) System Model Creation, (3) LLM Test Case Gener-
ation, (4) SLDV Test Case Generation, and (5) Coverage Metrics
Generation.

3.1.1 Requirements specification. In contemporary systems, vari-
ous types of requirements exist, each exhibiting different levels of
complexity [1]. In this study, the complexity of the requirements is
assessed using Cyclomatic Complexity [14] derived from the corre-
sponding Simulink models. Consequently, the authors developed
a set of 25 natural language requirements, articulated in English,
which vary in complexity. The requirements 3 utilized in this study
were manually crafted, drawing from a diverse range of systems
regarding scope, construction, domain, and complexity. This ap-
proach helps with a wider representation of different contexts and
challenges. For example, the requirement number 7 -

"if system wants to activate a test, first check if the test is enabled,
if enabled then activate the test, if not enabled then deactivate the
test", is a linear requirement and of low complexity, with cyclomatic
complexity score of 3.
Where as the requirement number 18 -

3Data available at https://doi.org/10.6084/m9.figshare.27020533
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Figure 2: Test Coverage Metrics

"The system shall calculate the fuel quantity in the chamber as
follows: The mileage of the vehicle is calculated as ..." has 169 words,
cyclomatic complexity of 41, and has multiple layers of require-
ments in which one requirement condition leads to a conditional
execution of another condition. The 25 requirements are designed
to be independent and not interrelated, ensuring that individual
Simulink models can be developed and utilized without dependen-
cies. These requirements focus on low-level system specifications,
allowing for the creation of executable system models without
necessitating additional models or higher-level systems.

3.1.2 System Model creation. The Simulink system models 3 were
manually created for each specified technical requirement, ensuring
that each model accurately reflects the associated requirements. Ad-
ditionally, the model is verified against the requirements manually
by co-authors. However, as the number of requirements and com-
plexity of the requirements increases, the feasibility of continuing
this manual approach diminishes.

3.1.3 LLM based test case generation. The selected prompt3 was
uniformly applied to all six LLMs in conjunction with each of the
specified requirements, and their responses were systematically
captured. The exact prompt used for generating test cases was as
follows: Generate exhaustive test cases in table format for the require-
ment “≪ 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑚𝑒𝑛𝑡 ≫”. Any non-generated input is considered
as 0 or default (as the case may be). The captured responses are then
converted to input format compatible with MATLAB™ toolchain

to generate test cases. It is to be noted that there was only one
prompt, and it was used across all requirements. A comparison
study of different prompts and their result analysis is being planned
in another study.

3.1.4 SLDV Test Case Generation. For each requirement, a sim-
ulatable and testable Simulink model is developed, ensuring that
the model accurately reflects the specified functionalities. Once a
Simulink model is constructed, baseline test cases are generated
using the SLDV toolbox. SLDV employs formal methods, includ-
ing static analysis and model checking, to rigorously analyze the
Simulink models. This analysis allows SLDV to generate test cases
that meet various coverage criteria, such as Decision Coverage, Con-
dition Coverage, and Modified Condition/Decision Coverage. By
applying these coverage criteria, SLDV can help effectively evaluate
the behavior of the model under different conditions.

3.1.5 Coverage Metrics Generation. All the test cases are provided
to the Simulink models and the coverage reports are generated. The
focus of this study is only on the coverage of the test cases. The
following metrics are considered for this study:

• Decision coverage
• Condition coverage
• MCDC (Modified condition/Decision coverage) [9]
• Execution coverage

The coverage metrics mentioned above are generated by the SLDV
toolbox without necessitating the actual code generation for the
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Simulink models. However, the study does not focus on other quan-
titativemetrics, such as the correctness, completeness, and precision
of the generated test cases. Additionally, aspects related to the effi-
ciency of test case generation, including the time taken to produce
these test cases, have also been excluded from consideration. This
study aims to assess the effectiveness of test case generation from
the perspective of adequate model coverage.

3.2 Evaluation criteria and metrics
The evaluation criteria are as follows: For a given requirement,
the LLM-generated test cases are used to get the coverage metrics.
These are compared for all requirements. A higher value corre-
sponding to the metric suggests that the LLM is better for that
particular coverage category. The cyclomatic complexity of the
model generated for the requirement is used as a reference com-
plexity metric. It is to be noted that the cyclomatic complexity is
dependent on the type of model-designing methods and practices
used in developing the models. It could be treated as subjective, but
the authors tried to maintain consistent patterns among all models
created to the extent possible.

4 RESULTS AND ANALYSIS
The metric values for the experiment are presented in Figure 2. It
is important to note that the MATLAB values are included solely
to establish a baseline for the maximum coverage that could poten-
tially be achieved; they should not be directly compared with the
results from the LLMs. This distinction arises from the fundamen-
tal difference in input types: MATLAB utilizes the model as input,
whereas the LLMs generate test cases based on textual require-
ments. Based on the values achieved the the following observations
can be inferred:

LLMs show a decline in performance as the complexity of the
requirements increased. In cases where the requirements were lin-
ear and of low complexity, all LLMs performed comparably to a
commercial testing tool. However, BARD’s performance was ob-
served to be the lowest among the six LLMs across the evaluated
metrics (figure 3). On an average GPT4.o and Llama3 are also on

Figure 3: The Median and Average of the LLMs coverage

the lower end among all 4 categories. If requirements are small and
not multi-leveled like 13A
"The system shall calculate the final answer C as follows. Var1 is the

summation of inputs A and B while Var2 is the summation D and E
. C is the summation of Var1 and Var2. When var1 is above 10 then
var2 is fixed at 20. When var1 is not above 10 but ver2 is above 20
then var 1 is fixed at 10". The LLMs provide results comparable to
SLDV.

There is no clear ’better performer’ with increasing complexity
in requirements as all LLMs are failing to get more than 25% of
MCDC.

Several observations were made regarding the performance of
the LLMs in generating test cases for specific requirements where
they consistently failed to produce satisfactory results. In instances
of multi-level requirements, some LLMs struggle to comprehend the
requirement as a cohesive whole (𝑎− > 𝑏− > 𝑐− > 𝑑 == 𝑎− > 𝑑)
and instead generate test cases at the individual component level. In
contrast, some models successfully generate test cases that reflect
the hierarchical nature of the requirements (refer req 13A/13B
metrics in figure 2).

In particular, when dealing with a single top-level activation
control signal, as illustrated in requirement 19A, which states:
"The Engine state is calculated as follows: Only when the key is in
ignition the system starts calculating if not the engine will be in off
state.When the ignition is on...", it was noted that BARD frequently
fails to recognize this overarching activation, leading to less ef-
fective outcomes compared to ChatGPT (refer to the metrics for
requirements 19, 19A, and 19B in Figure 2). Furthermore, for multi-
level requirements, it was observed that all LLMs, except for Gemini
and Llama 3, tend to overlook the lower-level requirements, as seen
in requirement 19C. In the case of requirement 16, which states:
"The system shall do the wing check as follows: The wing 1 will be
verified if the wing 1 motor has no failure, and ...", all LLMs failed
to generate any test cases that achieved coverage for MCDC. This
failure can be attributed to the requirement’s multi-layered and
interdependent nature, wherein each condition is contingent upon
the outputs of one or more other requirements. The inherent com-
plexity of the requirements appears to exceed the capacity of the
LLMs to effectively analyze and construct valid test cases that would
cover the necessary conditions.

The research questions raised in this study could be answered
as follows

(1) In regards to LLMs producing test cases using requirements,
its definitely possible. However, test case generated did not
provide complete coverage. For some of the requirements
the test cases did not satisfy the test adequecy criteria.

(2) If the requirements have any complex wording or inter-
dependency or multi layered style , the LLMs fail to generate
test cases for those parts

(3) Currently only unit level test cases that correspond to code/
model are generated by LLMs. Generic LLMs are not able to
generate System and Acceptance level test cases.

(4) The effectiveness of the test cases can be quantified by calcu-
lating the overall coverage of the software by the test cases.
Note that this does not consider the correctness of the test
case itself.
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5 LIMITATIONS AND THREATS TO VALIDITY
The requirements in this study are articulated exclusively in English,
with word counts ranging from 13 to 429. A total of 25 requirements
were constructed with a diverse array of systems in mind, including
calculators, cars, airplanes, weather monitoring systems, walking
mechanisms, automated teller machines, air conditioning units,
and battery charging systems. Each requirement was designed to
include at least two inputs and one output.

It is important to note that the correctness of the generated test
cases was not evaluated; the primary focus was on coverage metrics.
Additionally, only embedded-type requirements were considered
for this study. This choice reflects the fact that industrially produced
embedded systems typically possess a robust and well-defined set of
requirements, particularly in the context of safety-critical systems
that must be certified by relevant authorities. In contrast, online and
open systems often place less emphasis on stringent requirements,
as they are developed within constantly evolving environments
where system necessities can change frequently.

Furthermore, advanced requirements involving multiple time
bounds, multiple iterations, enumerations, and similar complexities
were not included in this evaluation. The intent of the current study
is to assess the test generation capabilities of various LLMs, and
as this research is in its initial stages, large requirements were not
included. This limitation affects the generalizability of the findings.

The complexity metric is based on the cyclomatic complexity
score of the developed simulink models. In practice the complexity
of a given requirement depends on various technical factors. The
Simulink model from the requirement was created and verified
for correctness manually. The comparison study conducted here is
based on technical requirements created manually and are not part
of any actual product. Thus they do not offer a complete picture of
what an actual product or system or software requirement might
entail. The LLMs may produce different responses for differently
worded and structured text even though they possess the same
meaning. Additionally, for larger systems, the test cases produced
by LLMs often require manual validation by domain experts, adding
an additional layer of human involvement, which could diminish the
benefit of automating the test case generation process. The prompt
was kept constant across all LLMs to assess the LLMs capabilities.
Multiple prompts were not attempted to get more contextualized
test cases. The motive is to test the LLMs by giving minimum
amount of extra information possible. A study can be conducted
with better prompt engineering and the results can possibly vary.

6 CONCLUSIONS AND FUTUREWORK
In the present study, we observed some patterns within the re-
sponses generated by LLMs, which can be leveraged to formulate
requirements that highlight areas of failure. This approach can con-
tribute to a deeper understanding of the models’ limitations and
facilitate the establishment of a baseline for their performance.

Future research will seek to assess the correctness of the gener-
ated test cases, thereby evaluating the capability of each LLM in
relation to specific requirements. Expanding the total number of
requirements and re-running the experiment with a broader dataset
could also yield more comprehensive insights.

Additionally, experimenting with different prompts may uncover
further observations and enhance the understanding of how LLMs
interpret and generate test cases. To evaluate the practical applica-
bility of test case generation using LLMs, it would be beneficial to
apply this methodology to a real-world product with a robust set
of requirements.
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