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Abstract The dense and unstructured text in historical manuscripts
presents significant challenges for precise line segmentation due to large
diversity in sizes, scripts and appearances of the documents. Existing
approaches tackle this complexity either by performing dataset-specific
processing or training per-dataset models. This strategy hampers main-
tainability and scalability as newer manuscript collections get digitized
and annotated. In this paper, we propose LineTR, a novel two-stage
line segmentation approach which can process a diverse variety of chal-
lenging handwritten documents in a unified, dataset-agnostic manner.
LineTR’s first stage processes context-adaptive image patches. It con-
sists of a novel DETR-style network which generates parametric rep-
resentations of text strike-through lines (scribbles) and a novel hybrid
CNN-transformer network which generates a text energy map. A dataset-
agnostic and robust post-processing procedure is applied on first-stage
outputs to obtain document-level scribbles. In the second stage, these
scribbles and the text energy map are used within a seam generation
framework to obtain highly precise polygons enclosing the manuscript
text lines. We also introduce three new diverse text line segmentation
datasets comprising challenging Indic and South-East Asian manuscripts.
Through experiments, ablations and evaluations, we show that LineTR
generates significantly superior line segmentations - all with a single
model. Our results also highlight the effectiveness of our unified model
for good quality zero-shot inference on the newly introduced datasets.
Project page: https://ihdia.iiit.ac.in/LineTR/.
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1 Introduction

Many approaches have been proposed in recent years to improve the quality of
text line segmentation in challenging historical manuscripts [27,30,6,21,31]. De-
spite their successes, fundamental challenges remain. For instance, manuscript
attributes such as size, aspect ratio, text line density, script, diacritics often
change dramatically across datasets. For existing approaches, this diversity of
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attributes is not easy to handle in a unified manner. As a compromise, dataset-
specific hyperparameters are used in some cases. In other cases, dataset-specific
models are trained. However, as new manuscript collections get digitized and
annotated, the current strategies are not practical from maintenance and scal-
ability point of view. Consequently, there is a practical need for an approach
which can process a diverse variety of manuscripts in a unified, dataset-agnostic
manner while delivering good line segmentation performance.

Motivated by this need, we propose LineTR, a unified, highly adaptive
and precise text segmentation approach for challenging historical manuscripts.
LineTR is designed as a two-stage pipeline [31]. To begin with, overlapping
patches are sampled from input image in a context-adaptive manner. The first
stage consists of [i] a novel DETR-style [8] deep network which generates para-
metric representations of text strike-through lines (scribbles) and [ii] a novel
hybrid CNN-transformer network which generates a text energy map. A dataset-
agnostic and robust post-processing procedure is applied on patch-level predic-
tions from the first stage to obtain document-level scribbles. The scribbles and
text energy map are used within an enhanced seam generation framework (the
second stage) to obtain highly precise polygons enclosing the manuscript text
lines.

Our first insight is that documents occur in various resolutions and aspect
ratios, and resizing them to a fixed size causes problems. If the patch size is too
large, then the number of learnable parameters as well as the memory and time
complexity increase dramatically, and otherwise if the patch size is too small,
then a lot of information in the image, such as the separation between the text
lines is gone. This motivates a patch-based approach, similar to [31]. However,
SeamFormer [31] samples patches of a fixed size (256×256), which brings in the
issue of bad context. A patch of a fixed size can contain vastly varying amounts
of information or context, depending on the resolution of the original document.
(see Fig. 1), which is not desirable for a system which works generally across
datasets. Therefore, an adaptive patching mechanism is required which can find
the right patch size for a given document. We have shown in our experiments
that this is a crucial design decision.

Our second insight is that a text line is a geometric structure (a curve), and
this can serve as an excellent prior for the task of text-line detection [22,11,9,35,23,15].
Segmentation based approaches [31,25,5,27,7,19,17,20,16] do not utilize this prior,
and instead predict a blob of pixels as the representation of a text-line, which
leads to unwanted artifacts such as merging of adjacent blobs (see Fig 2). We
approximate a text line within a patch using a straight line (see Fig. 3), and this
approach has clear benefits over segmentation based approaches, as indicated by
our results.

Finally, we also introduce three new diverse text line segmentation datasets
consisting of challenging Indic and South-East Asian manuscripts. Through ex-
periments, ablations and evaluations on new and existing palm leaf manuscript
datasets, we show that LineTR generates significantly superior line segmenta-
tions compared to other competing approaches (Sec. 7) - all with a single unified
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(a) too little context! (b) good context (c) too much context!

Figure 1: Fixed size patches (256× 256, as used in [31]) sampled from different
documents can result in poor context.

model. Additionally, we highlight the effectiveness of our unified model for good
quality zero-shot inference on the newly introduced datasets (Sec. 7). Additional
diagrams, zero-shot results and other details can be found on the project page.

2 Related Work

For an overview of methods ranging from classical image processing to deep
learning techniques, refer to Vadlamudi et al. [31]. In some approaches, the
document is fed to a neural network which directly predicts the text line polygo-
nal instances or regions [25,5,12,24,27,7,19,17,20,16]. These one-shot approaches
typically involve downsampling the image to a fixed input dimension. There-
fore, they do not work well for high-aspect ratio palm leaf manuscripts containing
closely spaced lines. Despite promising results on other historical manuscripts,
these approaches predict imprecise text-line polygons and exclude vital textual
components (e.g. diacritics).

A popular alternative is to predict 1-D geometric structures related to the
text line. These structures are often represented as underlines (baselines) [22,11,9]
or strike-throughs [35,23]. Instead of a pixel-based representation, Kiessling et
al. [15] propose an approach which predicts the Bezier coefficients of the baseline.

While some approaches treat the gap between adjacent baselines as text
lines [2], others employ heuristics to obtain text-line polygons [26]. Since these
approaches also involve input downsampling, they inherit the shortcomings of
one-shot approaches mentioned earlier. In contrast, our approach for LineTR
does not involve manuscript image downsampling.

Another popular line of research employs seam generation techniques for de-
lineating text-line polygons or combining seams to form text line polygons [1].
These methods employ the conventional seam carving algorithm [4] on cu-
rated energy maps to detect baselines or to generate separators for text-line
regions. The novelty in these approaches often originates from the proposed en-
ergy map. This is exemplified by Signed Distance Transform (SDT) for Arabic
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Figure 2: Issues with SeamFormer’s [31] raw scribble map output on a dense
Indic manuscript [27]. SeamFormer formulates scribble prediction as a per-pixel
binary classification task, leading to extremely noisy predictions. Highlighted
regions in the image cannot be post-processed to obtain distinct scribbles because
of extreme merging.

manuscripts [26], geodesic distance transform energy map [3], a global energy
map that incorporates diacritics [31]. These methodologies often rely on classical
image processing techniques. Vadlamudi et al. [31] propose a hybrid two-stage
approach in which strike-through regions predicted by a first stage network are
used along with multiple energy maps to generate medial, upper and lower seams
associated with the line polygon. While these approaches show promise, they
necessitate intensive hyper-parameter tuning for the energy maps for every new
dataset. While our approach uses seam generation, we introduce a hybrid CNN-
transformer module which produces a single energy map and generalizes across
diverse document styles and languages.

To avoid the drawbacks associated with image downsampling, some ap-
proaches partition the image into smaller patches and predict the text-line frag-
ments [6]. The fragments are typically merged into document-level polygons
using heuristic post-processing methods [31] or seam generation [6]. However,
the post-processing is fragile and not viable when the lines have dense and un-
even geometry as found in palm leaf manuscripts. Although SeamFormer [31]
reduces the fragility by predicting text strike-through scribbles at patch level,
the reliance on dataset-specific post-processing is not fully resolved due to noisy
pixel-based representation of the scribbles. Often, the predictions merge into
each other, as shown in Fig. 2. In contrast, we employ a parametric line rep-
resentation for scribbles which enables dataset-agnostic post-processing. Unlike
existing works which use fixed size patches, LineTR uses variable-sized patches
which aids generalization.

As a rule, existing approaches train separate models and employ heuristics
which are dataset-specific [6,31,35]. As emphasized earlier, ours is the first ap-
proach for text-line segmentation which works across multiple diverse datasets
without requiring dataset-specific processing. As we have shown, this ability
also enables LineTR to exhibit good zero-shot performance on unseen datasets.
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Figure 3: Stage-1 pipeline (Sec. 3.1). Scribbles lines are overlaid on the input
patch for clarity.

3 The Proposed Approach: LineTR

We adopt a two stage approach to predict text line polygons. In Stage-1 (see
Fig. 3), the input image is first split into overlapping contextual patches of
various sizes (Sec. 3.4.1). Each patch is processed by a deep network which
predicts (a) parametric representations of text strike-through lines (scribbles)
and (b) a continuous binary energy map (Sec. 3.1). The per-patch outputs are
merged using an adaptive, data-agnostic post-processing module to obtain a
global scribble map and a global binary energy map (Sec. 3.4.2). Stage-2: The
global maps from Stage-1 are processed using a seam generation algorithm to
obtain tight-fitting polygons enclosing the text lines in the image (Sec. 3.5).

3.1 Stage-1

In this stage, the input patch is first processed by a shared encoder (see Fig. 3).
The encoder’s representations (M in Fig. 3,4) are fed to the Line-Parameter
Generator which outputs parametric representations of scribble segments in the
patch. The encoder representations are also fed to the Text-Energy Map Gener-
ator which outputs a continuous ([0, 1]) binary energy map. Next, we describe
the individual components of Stage-1 pipeline.

3.1.1 The Encoder This is comprised of a Vision Transformer (ViT) [10]
which outputs feature map M – the encoder representation.

3.2 Line-Parameter Generator

3.2.1 Scribble Representation: We represent each scribble line using three
parameters (Fig. 4)– µx, µy and m where (µx, µy) represents the mid-point of the
scribble segment and m represents the slope (see Fig. 5). µx and µy are normal-
ized wrt patch dimensions by dividing with image width and height respectively
so that µx, µy ∈ [0, 1].
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Figure 4: Line-Parameter Generator

3.2.2 Architectural Details We introduce a novel DETR-style [8] frame-
work to predict parametric representations for each scribble line. A set of N
learnable embeddings, which we call ‘Line Queries’ are fed to a transformer de-
coder (see Fig. 4). Within the decoder, these line queries are processed along
with encoder representations M to obtain latent representations for the scrib-
ble lines (‘Output Embeddings’ in Fig. 4). These latent representations are
transformed via lightweight feed-forward networks (FFN) to obtain scribble line
parameters µx, µy,m and associated probabilities p (see top-right in Fig. 4).
Next, we describe some key components of the transformer decoder.

Line Queries: We first define ‘Line Priors’. These are N horizontal lines
distributed uniformly throughout the image (see bottom right corner of Fig. 4).
Formally, the i-th line prior A(i) is parameterized as µx = 0.5, µy = i/N,m = 0.
We define positional query Q

(i)
p as the positionally encoded and transformed

version of A(i). Each line query Q(i) is first initialized to zero. We add the
positional query Q

(i)
p at the inputs of the attention layers (see Fig. 4).

Self Attention: There are two types of attention in the transformer decoder
– self attention and cross attention [33]. The self attention is applied within the
Line Queries Q (defined previously). Note that the positional queries are added
to the line queries before computing the attention scores.

Cross Attention: The outputs of Self Attention are fed to the cross attention
module. Due to the large size of the encoder feature representation M , the
number of attention weights is quite large, which leads to slow convergence
in DETR-style frameworks [8,34,37]. To counter this, we adopt a decoupled
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Figure 5: Our proposed loss function for penalizing the misalignment between
two lines. If the scribble line touches the top or the bottom patch boundary,
then we use interpolation to calculate the loss as shown in the figure on the right.

row-column-based attention proposed by Wang et al. [34] which leads to faster
convergence.

Final Predictions: The line queries undergo successive layers of self-attention
and cross-attention with the encoder representations. Ultimately, each query
Q(i) is transformed into an output embedding E(i) - see Fig. 4. Each E(i)

either represents a scribble or ϕ (the empty class). We obtain the scribble-line
parameters µx, µy,m along with line probability score p for each embedding
using feed-forward networks (see Fig. 4).

3.2.3 Optimization: Having obtained the predicted parameters and line prob-
ability scores for each query, we match each ground truth line to a query such
that the assignment is one-to-one and optimal using the Hungarian Algorithm.

Let {li}N0
i=1 be the set of ground truth lines sorted by their µy values. We

define the median vertical gap δ between the sorted lines as δ =median{µy2
−

µy1 , µy3 − µy2 , ..., µyN0
− µyN0−1

}. Let l̂(µ̂x, µ̂y, m̂) be a predicted line with as-
sociated probability p and l(µx, µy,m) be a ground truth line. We propose a
geometry-based loss function for penalizing the misalignment between the pre-
dicted line l̂ and the ground truth line l. Let dleft and dright be the vertical
distances between the lines at the left and the right patch boundary respectively
(see Fig. 5). We define the geometric loss Lgeom as: Lgeom(l̂, l) = d2left + d2right.

Finally, we define the matching cost function Cmatch as follows:

Cmatch(l̂, l) = λgeom ·
Lgeom(l̂, l)

δ
− λp · p

where λgeom, λp ∈ R are hyperparameters. After the matching, some queries
would be assigned to a line. The rest of the queries would be assigned ϕ (the
empty class). Let g : Z+ → {Z+, ϕ} be the obtained matching, such that g(i) = j
if the ith prediction is matched to the jth ground truth line, and g(i) = ϕ if it is
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assigned ϕ. We define the optimization loss Lopt as follows:
Lopt = L1 + L2

L1 =

N∑
i=1;g(i)=ϕ

[
λ1Lfocal(pi,−)

]

L2 =

N∑
i=1;g(i) ̸=ϕ

[
λ2Lfocal(pi,+) + λgeom

Lgeom(l̂, l)

δ2

]
where λgeom, λ1, λ2 ∈ R are hyperparameters, and Lfocal stands for the focal
loss [18]:

Lfocal(pi,+) = −(1− pi)
γ log(pi)

Lfocal(pi,−) = −(pi)
γ log(1− pi)

where γ is a hyperparameter. This completes the description of ‘Line-Parameter
Generator’ module in Stage-1. Next, we describe the ‘Text-Energy Map Gener-
ator’ (see Fig. 3).

3.3 Text-Energy Map Generator

The text-energy map generator is used to generate a continuous binary ([0, 1])
map to be used as an input to the seam generation algorithm in Stage-2. It
uses a hybrid CNN-transformer architecture (see Fig. 6). The input patch is
fed to a CNN encoder which outputs a feature map P . This feature map and
representation M from the backbone encoder are fed to a transformer decoder.
Within the decoder, self attention is applied to M and the result is processed
along with P via a standard cross attention mechanism [33]. The resulting
output is decoded to the target binary map via a CNN decoder containing skip
connections with intermediate feature maps of the CNN encoder.

For optimization, we use the focal loss [18]:
L = −α · y · (1−ŷ)γ logŷ − (1− α) · (1−y) · ŷγ log(1−ŷ)

where ŷ represents the sigmoid activation layer’s output (shaded blue in Fig. 6),
y ∈ {0, 1} represents the ground truth, and α, γ are hyperparameters.

3.4 Stage-1 Inference and Post-Processing

In this section, we describe the mechanism by which global document-level strike-
through scribbles and Text-Energy map are obtained during test time (infer-
ence). The exact algorithms and visual explanations of the mechanisms can be
found on the project page.

3.4.1 Context-Adaptive Patching: Documents occur in various sizes. To
ensure that the patches contain enough contextual information for effective scrib-
ble line prediction, we introduce an adaptive patching mechanism. Given the
input image, we sample patches of various sizes, and perform inference to obtain
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Figure 6: Text-Energy Map Generator

initial scribble line outputs. These are used to estimate the average spacing
between text lines. A patch size t is calculated, such that the patches capture
suitable context in the document. We then sample patches of size t and per-
form inference to obtain scribble-line predictions. These predictions tend to be
more accurate because the patches are context-adapted. See Fig. 7 for a visual
description. Refer to the project page for more details.

3.4.2 Combining patch-level outputs: After obtaining context adapted
patches (Sec. 3.4.1) and patch-level scribble-line predictions (Sec. 3.2), we con-
struct the global scribble map S using an iterative Projection-Merging Algorithm.
Roughly, the algorithm involves rendering each patch’s line predictions on the
original document, which are then clustered based on distance between them.
Each cluster so formed represents a text line in the document. The exact algo-
rithm along with a visual explanation can be found on the project page.

To obtain the global Text-Energy Outputs, we sample the original image into
non-overlapping patches and pass them through the Text-Energy Map generator
(Sec. 3.3) to obtain patch-level outputs. These are then combined to form the
global Text-Energy map B. See the project page for more details.

3.5 Stage-2
The outputs of Stage-1 are a list of global scribbles S and a continuous Text-
Energy binary map B of the complete input image. These are processed by the
seam generation pipeline from SeamFormer [31] to obtain tight fitting polygons
enclosing the text lines.

We introduce two crucial modifications to the default approach in Seam-
Former [31]. Instead of thresholding the binary map, we use output from Stage-
1 as it is, i.e. B contains floating point values in the range [0, 1]. This avoids loss
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Figure 7: First, candidate patches of various sizes m = {64, 128, . . . 512} are
sampled from the document. Line-parameter predictions are made for each
patch by resizing them to the input shape expected by the model (s = 256)
and then passing them through the Line-Parameter Generator (Sec. 3.2). An
interline-gap value δ for each patch is calculated using the line predictions for
the patch. These patch-level interline gap predictions are then scaled to the size
of the original document (δ := δ · m

s ) and averaged to obtain an estimate of
the average interline gap value for the whole document. This averaged value is
multipled by a scaling factor ζ, which roughly represents the expected number
of text lines seen in a patch to obtain the final context-adapted patch size (t).
Patches of size t are then sampled from the original document, and are fed to
the Line-Parameter Generator to get the final predictions.

of crucial text presence information caused by thresholding. The second mod-
ification is to discard other energy maps used in SeamFormer [31] (smoothing
map, diacritic map and sobel map). This eliminates the need for determining
energy map weight coefficients. As shown via experiments (Table 3), the quality
of our Text-Energy map makes other maps redundant in practice.

4 Implementation Details

Architectural Details: The reference input shape for Stage-1 model is H0×W0×3,
where H0 = 256, W0 = 256. The ViT backbone (see Fig. 3) uses a patch size
of 16 × 16, and the output feature map M is of dimension H ×W × C, where
H = 16, W = 16 and C = 256, where C is the model’s embedding dimension.
The encoder consists of 8 encoder layers. Learnable position embeddings are
used. The Line-Parameter Generator (Fig. 4) uses N = 200 line queries. The
transformer decoder consists of L = 8 decoder layers. The probability threshold
p0 for line-prediction is set to 0.9. The CNN encoder for Text-Energy Map
Generator (Fig. 6) has 4 convolutional layers, each of which reduces the spatial
dimensions of the input image by half. The output of this encoder (P ) has the
same shape as the output of the backbone (M). The transformer decoder consists
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Table 1: Dataset Statistics (Sec. 5). Languages : hin - Hindi, tel - Telugu, tam
- Telugu, sun - Sundanese, ban - Balinese, khm - Khmer, mal - Malayalam, jav
- Javanese. Newly introduced datasets are shaded pink.

I2 SD BL KH KG WM UB SM

Name Indiscapes2 Sundanese Balinese Khmer KgathaM Wikimedia Upamiti Bori SVMP
Train Images 907 31 47 50 313 0 0 0
Test Images 229 30 49 200 79 60 30 30
Avg Lines 11 4 4 5 9 6 5 11
Min Size 442x207 2530x333 2505x637 2244x322 2636x410 2042x1440 2592x1728 4567x1331
Max Size 9184x1064 3159x352 5759x561 8224x696 3404x501 2324x1814 2592x1728 10277x3281

Aspect Ratio 3 9 10 11 7 3.5 1.5 2
Language hin,tel,tam sun ban khm mal ban,jav hin tel

Source [27] [28] [13] [32] [31] Wikimedia Private Private

of R = 3 decoder layers. The CNN decoder consists of 4 layers. Each layer
consists of a convolutional layer followed by upsampling. In the loss function,
we use α = 0.25.

Training Details: We perform Stage-1 training in two phases. In the first
phase, we train only the ViT backbone and the Line-Parameter Generator. In
the second phase, we freeze both of them, and train only the Text-Energy Map
Generator. In the first phase, we use a learning rate of 5 × 10−5, and train
for 60 epochs. We then reduce the learning rate to 10−5 and train for another
20 epochs. In the second phase, we train only the energy map generator with
a learning rate of 10−4 for 50 epochs. We use the AdamW optimizer, with
the coefficients set to PyTorch’s defaults. Our implementation is based on the
distributed PyTorch Lightning framework. We trained our model on 4 NVIDIA
RTX 2080Ti GPUs, with 24 images on each GPU. The first phase of training
took around 32 hours, and the second phase took around 7 hours.

5 Datasets

To evaluate the proposed model and baselines, we use palm leaf manuscript
datasets introduced in earlier works [13,28,31,32] - see Table 1 (shaded blue). In
addition, we annotate three new challenging manuscript datasets (WM,UB,SM)
for zero-shot evaluation (shaded pink). The diversity in terms of scripts, image
aspect ratios, image dimension ranges, number of lines seen in Table 1 under-
scores the challenge involved in palm-leaf manuscript text line segmentation.
The new datasets were annotated using the HInDoLA document image annota-
tion tool [29]. Instead of annotating polygons from scratch, a semi-automatic
approach was implemented and integrated into the tool. The annotators added
strike-through scribbles for text lines. These scribbles and a binarized version of
input image were processed by seam generation module from SeamFormer [31]
to obtain text line polygon predictions. The predicted polygon boundaries were
adjusted to accommodate missing diacritics and ensure correct enclosure of text
lines. Empirically, this semi-automatic approach provided a 75% reduction in
annotation time compared to the purely manual variant.



12 V.Agrawal et al.

6 Experiments

We compare LineTR against various state-of-the-art approaches developed for
handwritten historical manuscripts. For fair and consistent comparison, we train
all the models (ours, existing approaches) on a single large-scale dataset obtained
by combining the training sets of existing palm leaf manuscript datasets - Indis-
capes2 [27] [I2], KGatham [31] [KG], and Challenge B dataset of ICFHR 2018
Competition On Document Image Analysis Tasks for Southeast Asian Palm
Leaf Manuscripts [14] containing manuscripts from Balinese [13] [BL], Khmer
[32] [KH], and Sundanese [28] [SD] languages. We report the performance met-
rics on the respective test sets of these datasets. For existing approaches, we
follow the training instructions mentioned in their corresponding papers.

Trivedi et al. [30] demonstrate that Average Hausdorff Distance (AvgHD) is a
better measure of prediction performance for line polygon boundaries. Therefore,
we report AvgHD in addition to the standard Intersection over Union (IoU)
metric. To assess the zero-shot generalizability performance, we report these
metrics on three newly introduced datasets unseen during training - WM, UB,
and SM - see Table 1 for an overview of the datasets.

7 Results

As Table 2 shows, LineTR clearly outperforms other models by a significant
margin across all datasets. The consistently poor scores among other baselines
is an outcome of loose fit predicted text regions, often missing crucial textual
elements such as diacritics. Also, baseline methods [20,27,7] typically approach
text line segmentation as a per-pixel classification task, resizing images with
large aspect ratios to a fixed lower size. This resizing tends to merge adjacent
predicted text, particularly in dense text documents. In other baselines [31,1,22],
the suboptimal results are due to excessive dataset-specific decisions. LineTR’s
numbers on unseen datasets are on par with ones encountered during training.
This shows its zero-shot generalization ability.

7.1 Ablations
For ablation experiments, we report metrics on the combined test sets of the
seen benchmark datasets - see Table 3. The results suggest that a fine balance
is required so that number of Line Queries (N) in ‘Line-Parameter Generator’
(Sec. 3.2) is neither too many nor too few. Compared to using an arbitrarily
threshold binary map similar to SeamFormer [31]’s approach, our unthresholded
text energy map (Sec. 3.3) is a noticeably better choice. This is due to the
loss of text-information caused due to a fixed threshold value. To demonstrate
the importance of context-adaptive patching (Sec. 3.4.1) for generating training
data, we considered patches of fixed-size, similar to SeamFormer [31]. However,
we found that the combined dataset training is extremely unstable. In fact, the
optimization did not even converge. Finally, we replace Lgeom (Sec. 3.2.3) by
the EA-loss [36]. This setting also caused the network to not converge.



LineTR 13

Table 2: Comparative evaluation of LineTR using benchmark datasets. All
the baseline models are trained on the pooled dataset (Sec. 6) using default
settings mentioned in respective works to assess their adaptability. The results
are reported on test set of each dataset and three additional unseen datasets
(zero-shot).

I2[27] SD[28] BL[13] KH[32] KG[31] WM* UB* SM*

AvgHD ↓
Doc-UFCN [7] 68.60 71.17 74.52 95.90 38.79 41.39 71.10 174.14

SeamFormer [31] 11.82 8.92 104.75 49.03 7.83 11.54 9.46 130.98
Palmira [27] 15.81 6.50 301.21 203.59 7.50 24.11 18.88 15.78

LCG [1] 16.82 39.65 95.18 44.50 29.72 317.98 481.14 1034.88
dhSegment [22] 60.33 66.77 415.24 43.60 319.57 150.43 213.32 414.63

docExtractor [20] 77.25 33.86 43.16 48.36 40.24 87.75 95.51 260.70
LineTR 1.86 1.30 22.62 14.97 2.09 0.94 1.01 3.04

IoU ↑
Doc-UFCN [7] 0.23 0.10 0.08 0.11 0.12 0.15 0.10 0.16

SeamFormer [31] 0.51 0.53 0.32 0.37 0.49 0.49 0.76 0.43
Palmira [27] 0.72 0.66 0.39 0.41 0.62 0.53 0.54 0.69

LCG [1] 0.37 0.12 0.12 0.18 0.20 0.02 0.01 0.07
dhSegment [22] 0.34 0.12 0.03 0.08 0.12 0.10 0.13 0.09

docExtractor [20] 0.03 0.01 0.00 0.02 0.12 0.03 0.03 0.02
LineTR 0.80 0.73 0.62 0.69 0.81 0.66 0.82 0.82

* Newly introduced datasets with zero-shot baseline testing.

Table 3: Performance scores for LineTR ablative variants. (Sec. 7.1).
DNC=Did not converge
Ablation Type Pipeline Component Ablation Details IoU ↑ Avg HD ↓

Architectural
Line-Parameter Generator N = 100 0.45 145.39

N = 300 0.61 85.33
N = 400 0.62 28.72

Text-Energy Map Generator Threshold the energy map[31] 0.53 8.14
Optimization Line-Parameter Generator Replace Lgeom by EA-loss[36] DNC DNC

Dataset Data-Preparation Sample patches of fixed size DNC DNC

LineTR 0.74 7.13

7.2 Qualitative Results

As Fig. 8 shows, both of LineTR’s closest competitors – Palmira [27] and
SeamFormer [31] – fail when the text-lines have a curvature spread across the
document width. But LineTR is able to detect all the text-lines accurately.
Similarly, LineTR outperforms Palmira and SeamFormer on images where the
density of text is very high (see Fig. 9). Figure 10 shows the zero-shot outputs
of LineTR on the newly introduced datasets.
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(a) Palmira[27] (b) SeamFormer[31] (c) LineTR

Figure 8: Performance comparison on a challenging image with curved text-lines

(a) Palmira[27] (b) SeamFormer[31] (c) LineTR

Figure 9: Performance comparison on a challenging image with very dense text

8 Conclusion

LineTR is a novel dataset-agnostic approach for robust text line segmentation
in diverse and challenging historical manuscripts. Similar to recent successful
approaches, we use a two stage approach - scribble generation and scribble-
conditioned polygon generation. However, our unique and novel design choices
make a significant difference. The choice of predicting per-patch scribble line
parameters in the first stage helps avoid the difficulties of pixel-based scribble
representation. Our adaptive patch extraction ensures sufficient context capture
for predicting scribble line parameters. A sensible design for Text-Energy Map
Generator not only simplifies second stage processing, it also improves overall
results.

Unlike existing approaches, LineTR’s methodology does not require dataset-
specific fine-tuning. Another distinction is that the training process results in
a single model and does not require dataset-specific models. These features
make LineTR advantageous from a maintainability and scalability point of
view. LineTR not only outperforms strong baselines but also exhibits good
zero-shot performance on unseen datasets. This showcases its generalizability
and utility for the community.
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(a) WM

(b) UB

(c) SM

Figure 10: Zero-shot outputs of LineTR on the newly introduced datasets
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