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Abstract—In today’s dynamic technological landscape, sustain-
ability has emerged as a pivotal concern, especially with respect
to architecting Machine Learning enabled Systems (MLS). Many
ML models fail in transitioning to production, primarily hindered
by uncertainties due to data variations, evolving requirements,
and model instabilities. Machine Learning Operations (MLOps)
offers a promising solution by enhancing adaptability and
technical sustainability in MLS. However, MLOps itself faces
challenges related to environmental impact, technical mainte-
nance, and economic concerns. Over the years, self-adaptation
has emerged as a potential solution to handle uncertainties.
This paper introduces a novel approach employing self-adaptive
principles integrated into the MLOps architecture through a
MAPE-K loop to bolster MLOps sustainability. By autonomously
responding to uncertainties, including data, model dynamics,
and environmental variations, our approach aims to address the
sustainability concerns of a given MLOps pipeline identified by
an architect at design time. Further, we implement the method for
a Smart City use case to display the capabilities of our approach.

Index Terms—Sustainability, Self-Adaptation, MLOps

I. INTRODUCTION

The concern about the sustainability of software systems
has been exacerbated by the emergence of Machine Learning-
enabled systems (MLS), which are software systems that
incorporate ML models. This is due to their computational
complexity and uncertainties arising from their probabilistic
nature. Studies like those by Gartner [1] show that almost
half of the ML models do not successfully transition from
prototype to production because they are not sustainable.
Sustainability encompasses four dimensions: environmental,
technical, social and economical [2]. Environmental concerns,
including energy consumption and carbon emissions, are par-
ticularly pertinent as ML models often require significant com-
putational resources while training, retraining and deployment.
Technical concerns involve ensuring the maintainability [3]
and reliability of both the ML models (the core of MLS) and
the pipelines (the sequences of data processing and learning
steps), which can be challenging given the rapidly evolving
nature of ML. Moreover, MLS faces multiple Social concerns
like fairness, privacy, explainability, and broader issues like
ethics and legislation. Economic concerns are tied to the cost
of training, testing, and inference.

Machine Learning Operations (MLOps) [4] aims to enhance
the technical sustainability of an MLS by architecting MLOps
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Figure 1. Flow diagram for our approach

pipelines, which include the development, deployment, and
maintenance of ML models. However, MLOps needs to be
enhanced to address the other sustainability concerns. These
sustainability concerns for the MLOps pipelines can be iden-
tified by an architect at design time and visually represented
in a Decision Map (DM) [5].

Although a DM helps capture the sustainability concerns
at design time, some of the concerns arise from runtime
uncertainties inherent to MLOps pipelines. These include drifts
in data quality, model quality, evolving business needs, and
the dynamic environmental context, as put forward by [6] [7].
Over the years, self-adaptation has emerged as a potential
solution to handle runtime uncertainties [8]. However, not
much work has been done on integrating self-adaptation with
MLOps to make it sustainable.

The research question we pose is “(How) can self-adaptation
be used in MLOps to improve sustainability?” To this end,
this paper proposes a novel approach that uses self-adaptation
in MLOps pipelines through a MAPE-K loop [9] to improve
their sustainability. As in Figure 1, the system architect creates
a DM at design time, from which adaptation boundaries are
realised. This information is stored in the Knowledge base of
MAPE-K and enables run time self-adaptation of the MLOps
pipelines to enhance sustainability across dimensions. We
further demonstrate the practicality of our approach using a
Smart City case study to predict Air Quality.

II. RELATED WORK

There has been significant effort related to engineering MLS
through MLOps, including [4], [10], [11]. Traditional ap-
proaches do not address sustainability through self-adaptation.
The closest work we find is [12] describing a self-adaptive



approach to handle drift in an industrial process. Our approach
differs since it deals not only with model drift but also with
other sustainability aspects. What little work on self-adaptive
MLOps that exists fails to address the concern of sustainability,
across such dimensions mentioned in this paper, such as [13],
who apply a MAPE-K loop, and deal entirely with the method
and effects of self-adaptation in MLS. Whereas [14] discusses
MLOps and Al Software sustainability, it is not through the
lens of runtime self-adaptation. The concept of runtime goal
management is described by [15] by expressing adaptation
intent as a sustainability goal. They propose an approach that
uses decision maps to make sustainability-driven decisions for
adaptation in a systematic way but does not deal with MLS
and the added uncertainties they add due to their probabilistic
nature. Switching the lens to the field of software sustainabil-
ity, [5] describes decision maps for software sustainability and
categorizes concerns into social, technical, environmental, and
economic; and discusses immediate, enabling, and systemic
impacts. This, too, does not deal with MLS. Differently from
the above works, we propose an approach that aims to enhance
the sustainability of MLOps pipelines and thereby MLS by
taking into consideration design time goals through runtime
self-adaptation powered by MAPE-K loop.

III. CASE STUDY

The Smart City Living Lab of IIITH' is a research platform
and test bed for smart city applications comprising more
than 300 IoT nodes spanning various domains such as air
quality, water quality and quantity, solar power monitoring,
home automation, etc. Due to increasing vehicular traffic and
pollution, air quality monitoring (involves monitoring of Air
Quality Index, AQI) has emerged as one of the key domains
as this can contribute to the establishment of environmental
regulations in urban India. As part of this domain, there
are 10 outdoor and 5 indoor sensor nodes deployed in the
campus which collect air quality information such as PM2.5,
PM10 levels, temperature and humidity at a target frequency
of once every second. These data are then used by ML
pipelines to forecast AQI [16]. However, these pipelines do
not take into consideration the sustainability concerns arising
from model and data drifts (technical), increased cost and
energy consumption due to frequent retraining (economical
and environmental). To this end, we envision architecting a
self-adaptive MLOps pipeline to enhance sustainability. We
use this case study in the remainder of this paper to explain
our approach and the results obtained through our preliminary
evaluations.

IV. DEFINING OUR APPROACH

Our architecture utilizes the MAPE-K framework for self-
adaptation to respond to detected uncertainties. The three
components of our approach are: the Managed System, which
is the MLS, the Managing System, which is responsible for
monitoring the system and its environment, detecting uncer-
tainties at runtime, planning and executing adaptations; and
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the Decision Map, which captures the sustainability concerns
of the system at design time.

Managing System
Analyzer ging Sy Planner

Uncertainty
Detector

Go:

als
Monitor Repository H‘SD‘:”CE‘ Executor
Repository

)i @ ®

Model Cost Adaptation
Metric Metric Executor
A

Knowledge ‘
Strategy
e Evaluator

cposi :ﬂ:
Repository

Monitor Execute

Monitor
Execute

Managed System
A

Training Subsystem ]

Models §

Inference Subsystem ]4

Da\aT

Figure 2. Approach
A. Managed System
The Managed System encompasses the entirety of the MLOps
pipeline, consisting of two components, as in [17]:
1) Training Subsystem is responsible for developing and refin-
ing models based on available data. It handles model and data
versioning to track changes and improvements.
2) Inference Subsystem serves trained models obtained from
the training subsystem to deliver online/batch predictions.

B. Decision Map

A Decision Map (DM), as shown in Figure 3, is a visual
representation of sustainability concerns across the Social, En-
vironmental, Technical and Economic dimensions [5]. A sys-
tem architect decides the sustainability goals for each concern
during design time, setting the stage for runtime adaptation.
The architect also defines and modifies adaption boundaries
which dictate the acceptable quality of the system across
sustainability dimensions [15]. For instance, (rtmaz, "tmin)s
where rt,,i, and 7t,,4, denote the minimum and maximum

allowed response time of the system.
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The DM in Figure 3 describes the sustainability concerns
for our Case Study, a) Model Retraining: We would need
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Table 1

SELF-ADAPTATION UNCERTAINTIES, TACTICS AND STRATEGIES FOR SUSTAINABLE MLOPS

(THOSE IN BOLD HAVE BEEN IMPLEMENTED IN THE CASE STUDY)

Uncertainty Concern Impact Tactics Strategy
Immediate Enabling Systemic
1. Model Technical Reduced Reduced user Reduced social 1. Model switch Switch to a model with better
Drift quality of trust benefits performance but higher energy use
predictions
2. Retrain a. Conduct incremental learning
b. Conduct transfer learning
c. Conduct complete retraining
(with/without different
hyperparameters)
2. High Environmental| Increased Increased Reduced Model switch Switch to a model with lower
energy costs environmental economic com- energy consumption
consumption impact petitiveness
3. Future Technical Increased Difficulty in Reduced public | Update model Change thresholds for:
goals changes uncertainty: maintaining the trust in Al objectives a. Business metrics
system’s system b. Cost metrics
purpose c. Model metrics
4. Rise in cost | Economic Increased Difficulty in Reduced ability | Optimize the a. Reduce the amount of resources
costs deploying and to compete in system to reduce used by the system
maintaining the the market costs b. Use more cost-effective resources
system

to retrain our models with the latest data to account for
shifts in distribution of AQI caused due to seasons, increased
emissions and weather. b) Infrastructure Management: The
hardware infrastructure used to train the model and conduct
inference can affect response time, cost and energy utiliza-
tion. ¢) Data/Model Versioning: Improves maintainability and
reproducibility, but can increase operational costs.
Considering these concerns, we identify some uncertainties
from [6] that affect them, as well as their immediate, enabling
and systemic impacts in Table 1. Table I also contains the
tactics to mitigate identified uncertainties and the strategies
that can be employed to carry out the tactics, more of which
can be created by the architect.

C. Managing System

Knowledge: The Knowledge base, as in Figure 2 is divided
into three subsections: 1) Sustainability Goals Repository
stores the sustainability goals defined by the system architect
during the design phase, and the acceptable threshold for
metrics derived from the DM which are defined by the
adaptation boundaries. 2) Historical Data Repository stores
the version history of models and data. 3) Tactics Repository
stores mitigation tactics and the corresponding strategies.
Monitor: The Monitor component, as in Figure 2 continuously
collects data about the managed system’s state, including cost
metrics and model metrics. The Cost Metrics include the cost
of compute resources, data storage, model training, and infer-
ence. The Model Metrics evaluate the model’s performance,
including its confidence/accuracy and energy consumption.
Analyzer: The core of the Analyzer component is the Uncer-
tainty Detector (refer Figure 2), which analyzes the metrics
collected by the Monitor for anomalies or trends that might
signal uncertainties. These uncertainties, as defined in Table
I, are flagged based on thresholds in the Sustainability Goals
Repository. The Uncertainty Detector assesses the potential
impact of these uncertainties on the managed system to deter-

mine if an adaptation is necessary. These adaptation bound-
aries delineate the acceptable quality of the system [15]. These
boundaries are not fixed and can be adjusted based on factors
such as the system’s current state, changing requirements,
and environmental conditions. This makes it more effective
at detecting anomalies and other changes that may indicate
uncertainty since our definition of uncertainty, too, may evolve.
For instance, assume that in our case study (refer Section III),
the energy consumed for performing the forecasts, E, violates
the sustainability goals defined for energy consumption such
that £ < E,,;n or E > E,,.., then we can say that the
quality of the system has deteriorated, and the Planner will be
triggered to decide the adaption strategy.

Planner: When the Analyzer detects an uncertainty, the Plan-
ner component determines the optimal strategy to address it
using the Strategy Evaluator. It decides on the tactic and
strategy the Managing system should employ by mapping the
detected uncertainties to their respective tactic and strategy.
For instance, in our case study, if the trigger for the planner is
due to violations of energy, then the planner may switch the
model (refer Table I). Additionally, more sophisticated planner
strategies can incorporate Reinforcement Learning (RL) [18],
model checkers [19] or clustering [20] methods in combination
with the aforementioned methods.

Executor: The Adaptation Executor in the Executor im-
plements the strategy selected by the Planner component. It
interacts with both the training and the inference subsystem.
For instance, it can trigger a (re)training job in the training
subsystem or can switch to a different model in the inference
subsystem based on the selected strategy.

V. PRELIMINARY RESULTS

We implemented our approach (by addressing the model
drift & high energy consumption uncertainties which affect
the technical & environmental sustainability concerns respec-
tively) on the AQI forecasting pipeline (Section III). We utilize



the DM in Figure 3 to realize adaptation boundaries, which
are mentioned in the GitHub repository?. The forecasting
pipeline consists of two different models, one which uses
Linear Regression (lightweight model with low response time
& prediction quality) & one which makes use of a Long
Short Term Memory network (LSTM) (heavier model with
high prediction quality & response time.)
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We further evaluated our approach against five baseline ap-
proaches: two that use Linear Regression & LSTM, each
without retraining (RT) (Al & A2), two that use periodic RT
[21] (A3 & A4), and one that uses both models with periodic
RT & switching (A5). We switch between the models based on
CPU consumption. As shown in Figure 4, our approach (A6)
strikes a balance between performance, measured by R? score
and average CPU consumption over the past 10s, measured
in pJ. Unlike A3, A4 & AS, we retrain the models only
when model drift is detected. We calculate the model drift
using KL divergence, which quantifies the disparity between
the distribution of training data and real-time encountered
data. While using only the LSTM with periodic retraining
(A3) offers the best R? score, it consumes significantly more
energy than other approaches. Our approach, as compared
to periodically retraining both models and switching between
them (AS), improves R? score from 0.90 to 0.94 and reduces
average CPU consumption by 32%.

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose an architecture for a sustainable
MLOps pipeline by utilizing self-adaptation through a MAPE-
K loop. During design time, a system architect identifies
adaptation boundaries through the creation of a decision map
to allow for runtime self-adaptation. Preliminary evaluations
in our case study show that our approach strikes a balance
between performance and CPU consumption. We believe
that a self-adaptive MLOps architecture can pave the way
to increase sustainability of MLOps pipelines. Future work
includes evaluating the generalizability of our approach to
different domains and identifying more uncertainties and al-
leviation tactics, especially in the Social dimension. While
we focus on supervised ML tasks, work also needs to be
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done to address unsupervised and reinforcement learning tasks.
The rapid landscape of generative Al also presents promising
avenue for further research.
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