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Abstract—Pronunciation correction is crucial for Text-to-
Speech (TTS) systems in production. Traditional methods, which
rely on phoneme sequence manipulation, are often cumber-
some and error-prone. To address this, we propose Prompt-to-
Correct, an editing-based methodology for pronunciation cor-
rection in TTS systems using voice prompts. Our approach
enables accurate, granular corrections at test-time without the
need for additional training or fine-tuning. Unlike existing
speech editing methods, we eliminate the need for external
alignment to determine edit boundaries. By simply providing
a correctly-pronounced reading of a word in any voice or
accent, our system successfully corrects mispronunciations while
maintaining continuity. Experimental results demonstrate that
our method outperforms traditional baselines and state-of-the-
art speech editing techniques. Speech samples are available at:
https://prompt-to-correct.github.io/P2C

Index Terms—speech synthesis, pronunciation control,

I. INTRODUCTION

Correct pronunciation is critical for Text-to-Speech (TTS)
systems, particularly when handling out-of-domain vocabu-
lary such as proper nouns or code-mixed [1] text, which is
increasingly common in today’s multicultural environment.
Modern TTS systems [2]-[4] typically follow a two-stage
process: first, producing intermediate speech representations
from preprocessed text, and second, generating raw wave-
forms conditioned on these representations. Given that most
natural languages lack a one-to-one mapping between text
(graphemes) and speech, these systems rely on a linguistic
frontend to convert graphemes into phonemes using dictio-
nary lookups or pretrained grapheme-to-phoneme models [J5].
However, this often leads to incorrect pronunciations for out-
of-domain or foreign words.

To address these mispronunciations, conventional methods
involve manual manipulation of phoneme sequences. This
approach is cumbersome, requires linguistic expertise, and
is prone to errors, as demonstrated in our experiments. An
alternative strategy could be to increase the variety of word
pronunciations encountered during training or to develop a
unified, multilingual TTS system. However, this introduces
significant challenges. Training a large, multilingual TTS
model capable of handling diverse pronunciations would re-
quire vast amounts of text-audio data, significantly compli-
cating model deployment and inflating data collection costs to
impractical levels. Moreover, typical TTS corpora have limited
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word coverage, making a data-centric approach inefficient and
unlikely to provide practical improvements.

A more feasible solution is to directly edit the generated
speech by replacing mispronounced segments with corrected
ones. Recent advancements in text-based speech editing [6]—
[9] allow users to modify speech recordings via text tran-
scripts. However, these methods face similar challenges when
applied to pronunciation correction because they rely on the
text modality for edits. In our approach, we use speech as the
source of pronunciation information, which is easier for end-
users to provide compared to corrected phoneme sequences.

We introduce Prompt-to-Correct (P2C), a TTS editing sys-
tem that allows users to correct pronunciations by provid-
ing the correct pronunciation as a speech prompt during
inference, without requiring any model retraining or fine-
tuning. We leverage discrete self-supervised speech codes to
model the phonetic content of the speech prompt. Speech
codes have been shown to correlate well with phonemes and
also relatively free of speaker information. Our contributions
include demonstrating that P2C can correct pronunciations
using speech from a non-target speaker, regardless of accent,
and automating the correction process by eliminating the need
for external alignment tools to determine word boundaries. We
show that Prompt-to-Correct consistently outperforms tradi-
tional phoneme-based correction methods and state-of-the-art
speech editing techniques, particularly in multilingual and out-
of-domain scenarios.

II. BACKGROUND
A. Discrete SSL representations for Speech

Self Supervised Learning (SSL) methods for speech rep-
resentation have shown remarkable results in tasks like Au-
tomatic Speech Recognition(ASR) [10], [11], spoken lan-
guage modeling [12], [13] and speech resynthesis [14].
Wav2Vec2.0 [[10] employs a convolutional transformer-based
encoder architecture to encode raw audio samples into dis-
crete latent representations, optimizing a contrastive loss.
HuBERT [/11]] is trained with a masked prediction task similar
to BERT [15] on masked audio signals. The discrete units
are the cluster IDs obtained by clustering the learned features
from intermediate layers of the encoder network. In [14],
the authors compared various discrete speech representation
methods for speech synthesis, assessing their ability to model
lexical content and filter out speaker information. They found
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empirically that HuBERT displays superior disentanglement
properties, making it the preferred choice for acoustic repre-
sentation in our pipeline. This is corroborated by a similar
study conducted in [12]], where HuBERT scored the highest
in the speech generation task.

B. SSL based TTS architectures

Traditional TTS pipelines are cascade systems [2f, [3],
[16], [[17]] consisting of an acoustic model for translating text
or phoneme sequences into intermediate acoustic representa-
tions, and a vocoder [18], [19] for synthesizing the wave-
form based on these representations. Recently, self-supervised
speech representations have emerged as alternatives to mel-
spectrograms in these two-stage TTS models. For example,
WavThruVec [20] employs wav2vec2.0 embeddings as the
intermediate speech representation. It utilizes a transformer-
based encoder to map text input to wav2vec embeddings
which are then synthesized by HiFi-GAN [19]. Similarly,
VQTTS [21] follows a similar setup but uses vector quan-
tized acoustic features [22]]. ParrotTTS [4]] opts for HuBERT
units as the intermediate units, leveraging their disentangled
properties [[12f], [[14].

Incorporating a shared embedding space for both speech and
text facilitates the potential for seamless multimodal editing.
Consequently, the TTS design of Prompt-to-Correct is inspired
by the non-autoregressive version of ParrotTTS, adding a pitch
encoder and decoder to predict per-phoneme pitch tokens for
maintaining prosodic continuity after editing.

C. Speech editing

Speech editing involves manipulating specific words or
phrases in original speech while maintaining the naturalness
of the overall audio. In recent years, text-based editing sys-
tems have seen significant development, enabling editors to
modify the text transcript of speech and apply changes to the
waveform accordingly. Voco [23]], one of the early methods
combines a single-speaker TTS model with a voice conversion
model to generate the desired speech segment, which is then
concatenated with the input speech. More recent approaches
have improved by conditioning speech generation on the sur-
rounding context of the edit region. For instance, EditSpeech
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[6] uses two LSTM decoders to produce acoustic frames from
the left and right boundaries of the edit region, which are then
fused using a bidirectional fusion module. Campnet [7] and
A3T [8]] adopt a masked reconstruction objective to capture
more complex contextual information. FluentSpeech [9]], a
diffusion-based speech editing model, achieves state-of-the-art
performance on speech editing tasks using the LibriTTS [24]
and VCTK [25] datasets.

III. PROMPT-TO-CORRECT

This section presents the overarching architectural design
and editing pipeline of Prompt-to-Correct (P2C), as illustrated
in Figure |1} P2C comprises of two pre-trained and fixed audio
encoders i) Speech-to-Unit(S2U), ii) Pitch-to-Unit(P2U); Text-
to-Unit(T2U) model and the unit-based vocoder.

A. Audio Encoders

The proposed approach consists of two pretrained and
frozen self-supervised audio encoders. The input to both
encoders is a raw audio signal, X = (x1,...,27), where T
is the number of samples and X is sampled at 16 kHz. Both
encoders are decoupled modules trained separately to predict
speech and pitch units respectively.

Speech-to-Unit: The S2U model is a pretrained HuBERT-
Base model [11]] that encodes speech into a downsampled
sequence of embeddings, which are subsequently clustered
using the k-means algorithm to obtain discrete umtsﬂ denoted
as, 28) = (z (), zéf,)), where 77 = T/320 and each
zi € {1,...,K} for 1 < i < T’ with K being the number
of clusters. The resulting z(*) represents the phonetic content
of the input speech.

Pitch-to-Unit: We use the fundamental frequency (FO, or
pitch) to represent prosody. Previous work by [14]] demon-
strates that pairing HuBERT units with discrete FO represen-
tations enhances speech re-synthesis by incorporating more
prosodic information. The YAAPT algorithm [26] is used to
extract the FO sequence (f1, ..., fz/) from the input signal X.

'Throughout this paper, when referring to the S2U model, we encompass
both the encoding stage and the clustering stage, unless explicitly stated
otherwise
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Fig. 2. Detailed architecture of the Text-to-Unit model.

Subsequently, the pitch sequence encoded by P2U to obtain
discretized representations, denoted as z(f) = (z%f ) zg))

P2U is a VQ-VAE-based network [27]], consisting of a con-
volutional encoder, a bottleneck with a fixed-sized codebook,
and a decoder. The encoder extracts latent vectors from the
FO sequence, mapped to the nearest codebook vector within
the bottleneck. The decoder then reconstructs the original FO
signal given these mapped latent vectors. The indices of the

mapped latent vectors act as pitch units.

B. Text-to-Unit model

The T2U model is a text encoder that maps input phoneme
sequence P = (p1,...,pn) to corresponding speech and
pitch units (2(*), 2(/)). Tllustrated in Figure [2} the architecture
closely resembles the Non-Autoregressive FastSpeech2 [2]]
framework, comprising Feed-Forward Transformer Encoder
and Decoders. Initially, the input phonemes are encoded into
a sequence of phoneme embeddings. The duration predictor, a
two-layer 1D-convolutional network, and length regulator (LR)
modules ensure alignment between the length of the phoneme
embedding sequence and the output unit sequence. Following
the expansion of the phoneme embedding sequence, it is first
directed to the pitch decoder for decoding corresponding pitch
units z(). The output representation from the pitch decoder is
then added back to the encoder output and fed into the speech
decoder to generate speech units z(*). These units are then
concatenated and fed to the vocoder for waveform synthesis.

C. Unit-based vocoder

For unit-to-speech conversion, we use Code HiFi-GAN, in-
troduced in [[14] which takes speech and pitch units (2(*), 2(/))
as input. In this setup, each discrete unit corresponds to an
entry in their respective embedding look-up tables (LUT)
within the generator. These embeddings are upsampled and
transformed into the corresponding waveform. The vocoder is
also trained separately from the other modules.

D. Editing Pipeline

Figure |1|illustrates our editing pipeline. Given an input text
sequence W = (wy, ..., wy ) where each w; represents a word,

we convert W to a phoneme sequence P = (p1,...,pn’)
using an off-the-shelf phonemizer. P is passed to the T2U
model to generate speech units z(*) and pitch units 2(/). Now,
suppose w, is the mispronounced word and S}, is a correctly
pronounced speech utterance by any speaker. S2U encodes
Sp into speech units compatible with the vocoder. We then
identify the boundaries of w, in z(*) using the per-phoneme
durations provided by the duration predictor and replace the
incorrect speech units with those from the prompt. Finally, the
edited speech units along with the originally predicted pitch
units are passed to the vocoder to synthesize the corrected
speech. The pitch units help ensure that the synthesized speech
is continuous and does not contain breaks.

IV. EXPERIMENTAL SETUP
A. Implementation Details

We use the LJSpeech [28] single speaker dataset for all
our training purposes. Following [2], [16], we convert the text
into phoneme sequences using an open-source grapheme-to-
phoneme tool [5]. All speech recordings and datasets were
resampled to 16 kHz sample rate and preprocessed to remove
silences.

Speech-to-Unit: S2U is a HuBERT-BASE model pre-
trained for two iterations on 960 hours of the LibriSpeech [29]]
corpus. Similar to [[12], [[14], the representations were extracted
from the sixth layer. The k-means algorithm is trained on Lib-
riSpeech clean-100h dataset using K = 100 centroids. Both
the HuBERT and k-means models were publicly available.

Pitch-to-Unit: The P2U model was trained on the LJSpeech
dataset for 100k steps, following the methodology described
in [[14]. FO values were extracted from the audio using a frame
length of 20 ms and a hop size of 5 ms, resulting in a sampling
rate of 200Hz. The VQVAE quantization downsamples the
signal 16 times, resulting in a sampling rate of 12.5 Hz.

Text-to-Unit: We extract discrete speech and pitch units
from LJSpeech using the Unit Encoders to train the T2U
model. For most of the model configuration, we follow [4]. We
use Montreal Forced Aligner (MFA) to get phoneme-to-unit
alignment for the duration predictor. To ensure alignment be-
tween speech units and pitch units during training and editing,
we dynamically adjust pitch unit sequences by either padding
them to match longer speech unit sequences or truncating
them symmetrically from the middle to match shorter ones,
preserving the temporal coherence between the two modalities.
Both decoders are trained using a cross-entropy loss over the
discrete units.

Vocoder: We trained a single-speaker Code-HiFiGAN
model on LJSpeech for 300K steps. Speech and pitch units
for the vocoder are generated using the same S2U and P2U
models, respectively.

B. Datasets

Pronunciation-Correction: We curated a diverse dataset
for the pronunciation correction study primarily compris-
ing four thematic categories: Indian, French, German, and
Medical. We include 20 words from each category with



TABLE I
MOS (1) EVALUATION FOR PRONUNCIATION QUALITY ON THE
PRONUNCIATION-CORRECTION DATASET

Category Model MOS(1)
FastSpeech2-Std 1.86

TTS FastSpeech2-Alt 2.82
ParrotTTS-Std 1.90
ParrotTTS-Alt 2.92

Editing FluentSpeech-Std 2.24
FluentSpeech-Alt 3.12
Prompt-to-Correct (Ours) 4.11

accompanying speech recordings from online pronunciation
dictionaries to guarantee precise phonetic representations. The
selected words are either nouns or commonly used code-
mixing phrases. We construct two sentences for each word,
resulting in a total corpus size of 160. Our deliberate choice
of Indian, French, and German languages, in addition to
English, allows for a gradient of linguistic divergence, en-
abling a thorough evaluation of the method across varying
degrees of linguistic dissimilarity and arbitrary speakers and
accents. Furthermore, including medical terminology, known
for its compound nature, enriches the dataset and enhances the
complexity of the study.

C. Baselines

We compare P2C with the following methods: FastSpeech2
(Std/Alt), ParrotTTS (Std/Alt), and FluentSpeech (Std/Alt).
FastSpeech2 and ParrotTTS are well-established TTS archi-
tectures trained on the LJSpeech dataset. In the standard (Std)
setting, the target word is phonemized using a conventional
G2P model, while in the alternate (Alt) setting, the phoneme
sequence of the target word is predicted using a pretrained
phoneme prediction model (Wav2Vec2Phoneme [30]]) on the
reference pronunciation. These TTS baselines allow us to
evaluate the effectiveness of phoneme manipulation within
traditional TTS pipelines. FluentSpeech is a state-of-the-art
speech editing method originally designed to modify grapheme
sequences for editing. Although FluentSpeech was pretrained
on LibriTTS, which differs from the LISpeech dataset used for
training the TTS models, this discrepancy is not critical as the
pronunciation dataset we are evaluating on includes random
speakers and diverse accents. Since FluentSpeech also relies
on a G2P model, we adapted the method with a custom wrap-
per to enable direct phoneme sequence modifications, ensuring
a fair comparison. For evaluation, we simulate the correction
process by first generating TTS samples using a speaker from
the set of LibriTTS speakers and then attempting to correct
the pronunciation errors using FluentSpeech. FluentSpeech-
Std refers to its original grapheme-based correction, while
FluentSpeech-Alt refers to our phoneme-level adaptation. The
inclusion of FluentSpeech in both Std and Alt settings allows
us to demonstrate that even a sophisticated editing approach
struggles to achieve reliable pronunciation correction.

D. Pronunciation correction evaluation setup

To evaluate the efficacy of P2C’s pronunciation correc-
tion, we conducted a reference-based listening test in which
40 participants were presented with synthesized speech of
sentences from the Pronunciation-Correction dataset. Each
sentence included a specific word that participants were in-
structed to focus on for pronunciation accuracy. A reference
pronunciation for each target word was established to serve
as the benchmark for evaluation. Participants were presented
with one sentence at a time and to prevent order bias, the
order of the samples were randomized for each participant.
Each method was ranked on a S-point Likert scale, with 1
indicating a poor match with the reference pronunciation and
5 indicating a close match.

V. RESULTS AND DISCUSSION

Table [I| presents the results of the MOS evaluation for
pronunciation quality on the Pronunciation-Correction dataset.
P2C significantly outperforms all other baselines, achieving a
MOS score of 4.11. In contrast, the “standard” TTS models,
FastSpeech2-Std and ParrotTTS-Std, struggle with accurately
pronouncing complex and out-of-domain words, yielding low
MOS scores of 1.86 and 1.90, respectively. The alternate”
versions of these models perform better with scores of 2.82 for
FastSpeech2-Alt and 2.92 for ParrotTTS-Alt. However, their
improvements are marginal, and they still face challenges with
pronunciations from languages distant from English, such as
Indian and French.

FluentSpeech-Alt, performs better than the other baseline
methods, achieving a MOS score of 3.12. However, it remains
limited by its grapheme/phoneme editing approach, which
hinders its ability to correct pronunciation effectively across
diverse linguistic contexts. Additionally, FluentSpeech requires
an extra alignment step using a forced aligner to determine
the boundaries of the edit. In contrast, P2C benefits from
automatic boundary determination through its duration pre-
dictor, enhancing its flexibility and accuracy in pronunciation
correction.

VI. CONCLUSION

In this work, we introduced Prompt-to-Correct (P2C), a
TTS system designed to correct pronunciations using speech
inputs. Our experiments show that P2C can effectively correct
pronunciations from non-target speakers and various accents
without model retraining or fine-tuning. By Leveraging ad-
vancements in modular TTS architectures and self-supervised
representations, P2C harnesses a shared embedding space
to facilitate seamless editing across both text and speech
modalities. We address prevalent challenges associated with
phonetic control in existing TTS and editing systems by
offering a more intuitive and user-friendly approach. P2C
facilitates multilingual code-switching and ensures accurate
pronunciations for out-of-distribution words without extensive
retraining. Future work will focus on addressing limitations in
external alignment methods, such as duration prediction and
prosodic variability.
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